Saeid's picture
Model save
7d46eb3 verified
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/saeid93/huggingface/runs/2ghiy1dr)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/saeid93/huggingface/runs/2ghiy1dr)
# vit-base-patch16-224-in21k-finetuned-lora-food101
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1403
- Accuracy: 0.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 9 | 0.6670 | 0.864 |
| 2.2303 | 2.0 | 18 | 0.2156 | 0.93 |
| 0.3942 | 3.0 | 27 | 0.1582 | 0.956 |
| 0.2467 | 4.0 | 36 | 0.1474 | 0.948 |
| 0.1852 | 5.0 | 45 | 0.1403 | 0.95 |
### Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1