Whisper-large-v3-turbo-fa - Sadegh Karimi

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0839
  • Wer: 9.6275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1789 0.0217 500 0.2427 26.4099
0.2077 0.0435 1000 0.2296 27.1873
0.1928 0.0652 1500 0.2320 27.5951
0.1801 0.0869 2000 0.2026 24.0409
0.1865 0.1086 2500 0.1925 22.3742
0.1535 0.1304 3000 0.1872 22.9511
0.1463 0.1521 3500 0.1786 21.5436
0.0935 0.1738 4000 0.1749 20.5330
0.1052 0.1956 4500 0.1597 19.0314
0.091 0.2173 5000 0.1553 20.2125
0.0743 0.2390 5500 0.1474 16.9160
0.096 0.2607 6000 0.1352 15.9027
0.111 0.2825 6500 0.1259 14.9071
0.089 0.3042 7000 0.1179 14.1146
0.0813 0.3259 7500 0.1101 12.8653
0.072 0.3477 8000 0.1012 11.8138
0.0715 0.3694 8500 0.0948 10.9791
0.0683 0.3911 9000 0.0903 10.2563
0.0634 0.4128 9500 0.0861 9.6616
0.0739 0.4346 10000 0.0839 9.6275

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
124
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SadeghK/whisper-large-v3-turbo

Finetuned
(149)
this model

Dataset used to train SadeghK/whisper-large-v3-turbo

Evaluation results