Translation
PEFT
Safetensors

Shiksha MT Model Card

Model Details

1. Model Description

  • Developed by: SPRING Lab
  • Model type: LoRA Adaptor
  • Language(s) (NLP): Bengali, Gujarati, Hindi, Marathi, Malayalam, Kannada, Tamil, Telugu
  • License: CC-BY-4.0
  • Finetuned from model: NLLB-200 3.3B

2. Model Sources

Uses

How to Get Started with the Model

Use the code below to get started with the model.

import torch
from peft import AutoPeftModelForSeq2SeqLM
from transformers import NllbTokenizerFast

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load model and tokenizer from local checkpoint
model = AutoPeftModelForSeq2SeqLM.from_pretrained("SPRINGLab/shiksha-MT-nllb-3.3B", device_map=device)
tokenizer = NllbTokenizerFast.from_pretrained("facebook/nllb-200-3.3B")

input_text = "Welcome back to the lecture series in Cell Culture."

# Lang codes: https://github.com/facebookresearch/flores/tree/main/flores200
tgt_lang = "hin_Deva"

inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)

output = model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=256, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))

output_text = tokenizer.batch_decode(output, skip_special_tokens=True)

print(output_text[0])

Training Details

1. Training Data

We used the following datasets for training this adapter:

Shiksha: https://huggingface.co/datasets/SPRINGLab/shiksha
BPCC-cleaned: https://huggingface.co/datasets/SPRINGLab/BPCC_cleaned

2. Training Hyperparameters

  • peft-type: LORA
  • rank: 256
  • lora alpha: 256
  • lora dropout: 0.1
  • rslora: True
  • target modules: all-linear
  • learning rate: 4e-5
  • optimizer: adafactor
  • data-type: BF-16
  • epochs: 1

3. Compute Infrastructure

We used 8 x A100 40GB GPUs for training this adapter. We would like to thank CDAC for providing the compute resources.

Citation

If you use this model in your work, please cite us:

BibTeX:

@misc{joglekar2024shikshatechnicaldomainfocused,
      title={Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages}, 
      author={Advait Joglekar and Srinivasan Umesh},
      year={2024},
      eprint={2412.09025},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.09025}, 
}
Downloads last month
5
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for SPRINGLab/shiksha-MT-nllb-3.3B

Adapter
(4)
this model

Datasets used to train SPRINGLab/shiksha-MT-nllb-3.3B

Collection including SPRINGLab/shiksha-MT-nllb-3.3B