SOLAR-10.7B-slerp

SOLAR-10.7B-slerp is a merge of the following models using mergekit:

Github

https://github.com/sunjin7725/SOLAR-10.7b-slerp

Benchmark

Open-Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
56.93 53.58 62.03 53.31 57.16 58.56

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

repo = 'SJ-Donald/SOLAR-10.7B-slerp'

tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
    repo,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map='auto'
)

🧩 Configuration

slices:
  - sources:
      - model: LDCC/LDCC-SOLAR-10.7B
        layer_range: [0, 48]
      - model: upstage/SOLAR-10.7B-Instruct-v1.0
        layer_range: [0, 48]
merge_method: slerp
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
tokenizer_source: union
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.58
AI2 Reasoning Challenge (25-Shot) 68.17
HellaSwag (10-Shot) 86.91
MMLU (5-Shot) 66.73
TruthfulQA (0-shot) 67.42
Winogrande (5-shot) 84.06
GSM8k (5-shot) 62.17
Downloads last month
3,027
Safetensors
Model size
10.9B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SJ-Donald/SOLAR-10.7B-slerp

Evaluation results