Vision Transformer for Tumor Classification
This model is a fine-tuned version of google/vit-base-patch16-224 for binary tumor classification in medical images.
Model Details
- Model Type: Vision Transformer (ViT)
- Base Model: google/vit-base-patch16-224
- Task: Binary Image Classification
- Training Data: Medical image dataset with tumor/non-tumor annotations
- Input: Medical images (224x224 pixels)
- Output: Binary classification (tumor/non-tumor)
- Model Size: 85.8M parameters
- Framework: PyTorch
- License: Apache 2.0
Intended Use
This model is designed for tumor classification in medical imaging. It should be used as part of a larger medical diagnostic system and not as a standalone diagnostic tool.
Usage
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
# Load model and processor
processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
model = AutoModelForImageClassification.from_pretrained("SIATCN/vit_tumor_classifier")
# Load and process image
image = Image.open("path_to_your_image.jpg")
inputs = processor(image, return_tensors="pt")
# Make prediction
outputs = model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
predicted_label = predictions.argmax().item()
confidence = predictions[0][predicted_label].item()
# Get class name
class_names = ["non-tumor", "tumor"]
print(f"Predicted: {class_names[predicted_label]} (confidence: {confidence:.2f})")
- Downloads last month
- 8
Model tree for SIATCN/vit_tumor_classifier
Base model
google/vit-base-patch16-224Spaces using SIATCN/vit_tumor_classifier 3
Evaluation results
- Accuracyself-reported0.850
- F1 Scoreself-reported0.840