|
--- |
|
license: cc-by-4.0 |
|
datasets: |
|
- RussRobin/SpatialQA |
|
language: |
|
- en |
|
tags: |
|
- Embodied AI |
|
- MLLM |
|
- VLM |
|
- Spatial Understanding |
|
- Phi-2 |
|
pipeline_tag: visual-question-answering |
|
--- |
|
|
|
SpatialBot is a VLM with spatial understanding and reasoning abilties, by precisely understanding depth maps and using them to do high-level tasks. |
|
|
|
In this HF repo, we provide the merged SpatialBot-3B, which is based on Phi-2 and SigLIP. It can perform well on general VLM tasks and spatial understanding benchmarks like SpatialBench. |
|
|
|
## How to use SpatialBot-3B |
|
### NOTE: We update the repo and quick start codes in 28 August, 2024. Please update your model and codes if you downloaded them before this date. |
|
1. Install dependencies first: |
|
``` |
|
pip install torch transformers accelerate pillow numpy |
|
``` |
|
|
|
2. Run the model: |
|
``` |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import warnings |
|
import numpy as np |
|
|
|
# disable some warnings |
|
transformers.logging.set_verbosity_error() |
|
transformers.logging.disable_progress_bar() |
|
warnings.filterwarnings('ignore') |
|
|
|
# set device |
|
device = 'cuda' # or cpu |
|
|
|
model_name = 'RussRobin/SpatialBot-3B' |
|
offset_bos = 0 |
|
|
|
# create model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, # float32 for cpu |
|
device_map='auto', |
|
trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, |
|
trust_remote_code=True) |
|
|
|
# text prompt |
|
prompt = 'What is the depth value of point <0.5,0.2>? Answer directly from depth map.' |
|
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image 1>\n<image 2>\n{prompt} ASSISTANT:" |
|
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image 1>\n<image 2>\n')] |
|
input_ids = torch.tensor(text_chunks[0] + [-201] + [-202] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) |
|
|
|
image1 = Image.open('rgb.jpg') |
|
image2 = Image.open('depth.png') |
|
|
|
channels = len(image2.getbands()) |
|
if channels == 1: |
|
img = np.array(image2) |
|
height, width = img.shape |
|
three_channel_array = np.zeros((height, width, 3), dtype=np.uint8) |
|
three_channel_array[:, :, 0] = (img // 1024) * 4 |
|
three_channel_array[:, :, 1] = (img // 32) * 8 |
|
three_channel_array[:, :, 2] = (img % 32) * 8 |
|
image2 = Image.fromarray(three_channel_array, 'RGB') |
|
|
|
image_tensor = model.process_images([image1,image2], model.config).to(dtype=model.dtype, device=device) |
|
|
|
# generate |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor, |
|
max_new_tokens=100, |
|
use_cache=True, |
|
repetition_penalty=1.0 # increase this to avoid chattering |
|
)[0] |
|
|
|
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()) |
|
``` |
|
|
|
### Paper: |
|
https://arxiv.org/abs/2406.13642 |
|
|
|
### GitHub repo: |
|
https://github.com/BAAI-DCAI/SpatialBot |
|
|
|
<!-- ### SpatialQA, the training set: |
|
https://huggingface.co/datasets/RussRobin/SpatialQA |
|
--> |
|
### SpatialBench, the benchmark: |
|
https://huggingface.co/datasets/RussRobin/SpatialBench |
|
|
|
### CKPTs for SpatialBot-3B with LoRA: |
|
https://huggingface.co/RussRobin/SpatialBot-3B-LoRA |