model_ckpt / README.md
RugvedaWork's picture
Model save
2ea2fea verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: model_ckpt
    results: []

model_ckpt

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0091
  • Accuracy: 0.9989
  • F1: 0.9989
  • Precision: 0.9989
  • Recall: 0.9989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 116
  • eval_batch_size: 116
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3936 1.0 45 0.0168 1.0 1.0 1.0 1.0
0.0187 2.0 90 0.0047 0.9989 0.9989 0.9989 0.9989
0.0049 3.0 135 0.0345 0.9945 0.9945 0.9945 0.9945
0.0035 4.0 180 0.0105 0.9978 0.9978 0.9978 0.9978
0.0015 5.0 225 0.0075 0.9989 0.9989 0.9989 0.9989
0.0009 6.0 270 0.0077 0.9989 0.9989 0.9989 0.9989
0.0007 7.0 315 0.0078 0.9989 0.9989 0.9989 0.9989
0.0006 8.0 360 0.0079 0.9989 0.9989 0.9989 0.9989
0.0005 9.0 405 0.0081 0.9989 0.9989 0.9989 0.9989
0.0004 10.0 450 0.0083 0.9989 0.9989 0.9989 0.9989
0.0004 11.0 495 0.0085 0.9989 0.9989 0.9989 0.9989
0.0003 12.0 540 0.0086 0.9989 0.9989 0.9989 0.9989
0.0003 13.0 585 0.0087 0.9989 0.9989 0.9989 0.9989
0.0003 14.0 630 0.0088 0.9989 0.9989 0.9989 0.9989
0.0003 15.0 675 0.0089 0.9989 0.9989 0.9989 0.9989
0.0003 16.0 720 0.0090 0.9989 0.9989 0.9989 0.9989
0.0002 17.0 765 0.0090 0.9989 0.9989 0.9989 0.9989
0.0002 18.0 810 0.0090 0.9989 0.9989 0.9989 0.9989
0.0002 19.0 855 0.0091 0.9989 0.9989 0.9989 0.9989
0.0002 20.0 900 0.0091 0.9989 0.9989 0.9989 0.9989

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1