Rsr2425's picture
Rsr2425/Transformers-Workshop-BART-Summarization
a9609f0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/bart-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart-base-finetuned-CNN-DailyNews
    results: []

bart-base-finetuned-CNN-DailyNews

This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8960
  • Rouge1: 0.197
  • Rouge2: 0.116
  • Rougel: 0.1733
  • Rougelsum: 0.1853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.0481 1.0 63 1.9149 0.184 0.1081 0.1652 0.173
1.7799 2.0 126 1.8636 0.202 0.1142 0.1774 0.1883
1.5662 3.0 189 1.8301 0.1937 0.1107 0.1695 0.1787
1.4463 4.0 252 1.8581 0.1973 0.1166 0.174 0.1851
1.2893 5.0 315 1.8600 0.1885 0.1069 0.166 0.175
1.232 6.0 378 1.8637 0.1942 0.1115 0.1704 0.1808
1.1332 7.0 441 1.8797 0.194 0.1143 0.1725 0.1823
1.1014 8.0 504 1.8960 0.197 0.116 0.1733 0.1853

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0