SentenceTransformer based on RomainDarous/pre_training_dot_product_generalized_model
This is a sentence-transformers model finetuned from RomainDarous/pre_training_dot_product_generalized_model on the multi_stsb_de, multi_stsb_es, multi_stsb_fr, multi_stsb_it, multi_stsb_nl, multi_stsb_pl, multi_stsb_pt, multi_stsb_ru and multi_stsb_zh datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: RomainDarous/pre_training_dot_product_generalized_model
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Languages: de, en, es, fr, it, nl, pl, pt, ru, zh
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): MultiHeadGeneralizedPooling(
(Q): ModuleList(
(0-7): 8 x Linear(in_features=96, out_features=1, bias=True)
)
(P_K): ModuleList(
(0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
)
)
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/multists_finetuned_dot_product_generalized_model")
# Run inference
sentences = [
'Dois cães a lutar na neve.',
'Dois cães brincam na neve.',
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-eval
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-eval | sts-test |
---|---|---|
pearson_cosine | 0.6343 | 0.6548 |
spearman_cosine | 0.6653 | 0.6622 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6165 |
spearman_cosine | 0.6435 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6442 |
spearman_cosine | 0.6735 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6382 |
spearman_cosine | 0.6747 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6204 |
spearman_cosine | 0.6567 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.572 |
spearman_cosine | 0.5966 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6048 |
spearman_cosine | 0.6339 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5936 |
spearman_cosine | 0.6104 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6703 |
spearman_cosine | 0.6913 |
Training Details
Training Datasets
multi_stsb_de
- Dataset: multi_stsb_de at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 12.05 tokens
- max: 37 tokens
- min: 6 tokens
- mean: 12.01 tokens
- max: 37 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Ein Flugzeug hebt gerade ab.
Ein Flugzeug hebt gerade ab.
1.0
Ein Mann spielt eine große Flöte.
Ein Mann spielt eine Flöte.
0.7599999904632568
Ein Mann streicht geriebenen Käse auf eine Pizza.
Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_es
- Dataset: multi_stsb_es at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.28 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 12.14 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un avión está despegando.
Un avión está despegando.
1.0
Un hombre está tocando una gran flauta.
Un hombre está tocando una flauta.
0.7599999904632568
Un hombre está untando queso rallado en una pizza.
Un hombre está untando queso rallado en una pizza cruda.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_fr
- Dataset: multi_stsb_fr at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 12.47 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 12.37 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un avion est en train de décoller.
Un avion est en train de décoller.
1.0
Un homme joue d'une grande flûte.
Un homme joue de la flûte.
0.7599999904632568
Un homme étale du fromage râpé sur une pizza.
Un homme étale du fromage râpé sur une pizza non cuite.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_it
- Dataset: multi_stsb_it at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.92 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 12.81 tokens
- max: 30 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un aereo sta decollando.
Un aereo sta decollando.
1.0
Un uomo sta suonando un grande flauto.
Un uomo sta suonando un flauto.
0.7599999904632568
Un uomo sta spalmando del formaggio a pezzetti su una pizza.
Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_nl
- Dataset: multi_stsb_nl at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 12.12 tokens
- max: 33 tokens
- min: 6 tokens
- mean: 12.04 tokens
- max: 30 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Er gaat een vliegtuig opstijgen.
Er gaat een vliegtuig opstijgen.
1.0
Een man speelt een grote fluit.
Een man speelt fluit.
0.7599999904632568
Een man smeert geraspte kaas op een pizza.
Een man strooit geraspte kaas op een ongekookte pizza.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pl
- Dataset: multi_stsb_pl at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 13.24 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 13.08 tokens
- max: 34 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Samolot wystartował.
Samolot wystartował.
1.0
Człowiek gra na dużym flecie.
Człowiek gra na flecie.
0.7599999904632568
Mężczyzna rozsiewa na pizzy rozdrobniony ser.
Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pt
- Dataset: multi_stsb_pt at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 13.0 tokens
- max: 37 tokens
- min: 7 tokens
- mean: 12.99 tokens
- max: 34 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Um avião está a descolar.
Um avião aéreo está a descolar.
1.0
Um homem está a tocar uma grande flauta.
Um homem está a tocar uma flauta.
0.7599999904632568
Um homem está a espalhar queijo desfiado numa pizza.
Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_ru
- Dataset: multi_stsb_ru at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 12.66 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 12.67 tokens
- max: 36 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Самолет взлетает.
Взлетает самолет.
1.0
Человек играет на большой флейте.
Человек играет на флейте.
0.7599999904632568
Мужчина разбрасывает сыр на пиццу.
Мужчина разбрасывает измельченный сыр на вареную пиццу.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_zh
- Dataset: multi_stsb_zh at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.55 tokens
- max: 37 tokens
- min: 6 tokens
- mean: 12.73 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score 一架飞机正在起飞。
一架飞机正在起飞。
1.0
一个男人正在吹一支大笛子。
一个人在吹笛子。
0.7599999904632568
一名男子正在比萨饼上涂抹奶酪丝。
一名男子正在将奶酪丝涂抹在未熟的披萨上。
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Datasets
multi_stsb_de
- Dataset: multi_stsb_de at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 18.96 tokens
- max: 51 tokens
- min: 6 tokens
- mean: 19.01 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Ein Mann mit einem Schutzhelm tanzt.
Ein Mann mit einem Schutzhelm tanzt.
1.0
Ein kleines Kind reitet auf einem Pferd.
Ein Kind reitet auf einem Pferd.
0.949999988079071
Ein Mann verfüttert eine Maus an eine Schlange.
Der Mann füttert die Schlange mit einer Maus.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_es
- Dataset: multi_stsb_es at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 18.41 tokens
- max: 45 tokens
- min: 7 tokens
- mean: 18.24 tokens
- max: 51 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un hombre con un casco está bailando.
Un hombre con un casco está bailando.
1.0
Un niño pequeño está montando a caballo.
Un niño está montando a caballo.
0.949999988079071
Un hombre está alimentando a una serpiente con un ratón.
El hombre está alimentando a la serpiente con un ratón.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_fr
- Dataset: multi_stsb_fr at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.77 tokens
- max: 50 tokens
- min: 6 tokens
- mean: 19.62 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un homme avec un casque de sécurité est en train de danser.
Un homme portant un casque de sécurité est en train de danser.
1.0
Un jeune enfant monte à cheval.
Un enfant monte à cheval.
0.949999988079071
Un homme donne une souris à un serpent.
L'homme donne une souris au serpent.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_it
- Dataset: multi_stsb_it at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.05 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 19.03 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un uomo con l'elmetto sta ballando.
Un uomo che indossa un elmetto sta ballando.
1.0
Un bambino piccolo sta cavalcando un cavallo.
Un bambino sta cavalcando un cavallo.
0.949999988079071
Un uomo sta dando da mangiare un topo a un serpente.
L'uomo sta dando da mangiare un topo al serpente.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_nl
- Dataset: multi_stsb_nl at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.12 tokens
- max: 49 tokens
- min: 7 tokens
- mean: 18.95 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Een man met een helm is aan het dansen.
Een man met een helm is aan het dansen.
1.0
Een jong kind rijdt op een paard.
Een kind rijdt op een paard.
0.949999988079071
Een man voedt een muis aan een slang.
De man voert een muis aan de slang.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pl
- Dataset: multi_stsb_pl at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 21.6 tokens
- max: 58 tokens
- min: 7 tokens
- mean: 21.47 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Tańczy mężczyzna w twardym kapeluszu.
Tańczy mężczyzna w twardym kapeluszu.
1.0
Małe dziecko jedzie na koniu.
Dziecko jedzie na koniu.
0.949999988079071
Człowiek karmi węża myszką.
Ten człowiek karmi węża myszką.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pt
- Dataset: multi_stsb_pt at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 19.26 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 19.08 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Um homem de chapéu duro está a dançar.
Um homem com um capacete está a dançar.
1.0
Uma criança pequena está a montar a cavalo.
Uma criança está a montar a cavalo.
0.949999988079071
Um homem está a alimentar um rato a uma cobra.
O homem está a alimentar a cobra com um rato.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_ru
- Dataset: multi_stsb_ru at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 20.91 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 20.95 tokens
- max: 65 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Человек в твердой шляпе танцует.
Мужчина в твердой шляпе танцует.
1.0
Маленький ребенок едет верхом на лошади.
Ребенок едет на лошади.
0.949999988079071
Мужчина кормит мышь змее.
Человек кормит змею мышью.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_zh
- Dataset: multi_stsb_zh at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 19.81 tokens
- max: 53 tokens
- min: 5 tokens
- mean: 19.67 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 一个戴着硬帽子的人在跳舞。
一个戴着硬帽的人在跳舞。
1.0
一个小孩子在骑马。
一个孩子在骑马。
0.949999988079071
一个人正在用老鼠喂蛇。
那人正在给蛇喂老鼠。
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 3240 | 4.6623 | 4.6493 | 4.6237 | 4.6280 | 4.6317 | 4.6256 | 4.6869 | 4.6591 | 4.6633 | 4.6177 | 0.6101 | - |
2.0 | 6480 | 4.4436 | 4.8672 | 4.8224 | 4.8363 | 4.8211 | 4.8247 | 4.8125 | 4.9116 | 4.8408 | 4.7349 | 0.6622 | - |
3.0 | 9720 | 4.1768 | 4.9497 | 4.9731 | 4.9251 | 4.9189 | 4.9664 | 4.9671 | 4.9279 | 4.9096 | 4.7731 | 0.6908 | - |
4.0 | 12960 | 3.8923 | 5.5704 | 5.6636 | 5.5472 | 5.5670 | 5.5619 | 5.5856 | 5.6623 | 5.3046 | 5.2508 | 0.6913 | 0.6622 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RomainDarous/multists_finetuned_dot_product_generalized_model
Dataset used to train RomainDarous/multists_finetuned_dot_product_generalized_model
Evaluation results
- Pearson Cosine on sts evalself-reported0.634
- Spearman Cosine on sts evalself-reported0.665
- Pearson Cosine on sts evalself-reported0.616
- Spearman Cosine on sts evalself-reported0.644
- Pearson Cosine on sts evalself-reported0.644
- Spearman Cosine on sts evalself-reported0.673
- Pearson Cosine on sts evalself-reported0.638
- Spearman Cosine on sts evalself-reported0.675
- Pearson Cosine on sts evalself-reported0.620
- Spearman Cosine on sts evalself-reported0.657