Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - deb59464c0a667a1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/deb59464c0a667a1_train_data.json
  type:
    field_instruction: question
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/d1949c4a-0a6f-4ea8-9a91-961471599334
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/deb59464c0a667a1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2379ea32-7a7b-48aa-9667-b04a8ab9542e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2379ea32-7a7b-48aa-9667-b04a8ab9542e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

d1949c4a-0a6f-4ea8-9a91-961471599334

This model is a fine-tuned version of jingyeom/seal3.1.6n_7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0005 1 nan
0.0 0.0273 50 nan
0.0 0.0547 100 nan
0.0 0.0820 150 nan
0.0 0.1093 200 nan
0.0 0.1366 250 nan
0.0 0.1640 300 nan
0.0 0.1913 350 nan
0.0 0.2186 400 nan
0.0 0.2460 450 nan
0.0 0.2733 500 nan
0.0 0.3006 550 nan
0.0 0.3279 600 nan
0.0 0.3553 650 nan
0.0 0.3826 700 nan
0.0 0.4099 750 nan
0.0 0.4372 800 nan
0.0 0.4646 850 nan
0.0 0.4919 900 nan
0.0 0.5192 950 nan
0.0 0.5466 1000 nan
0.0 0.5739 1050 nan
0.0 0.6012 1100 nan
0.0 0.6285 1150 nan
0.0 0.6559 1200 nan
0.0 0.6832 1250 nan
0.0 0.7105 1300 nan
0.0 0.7379 1350 nan
0.0 0.7652 1400 nan
0.0 0.7925 1450 nan
0.0 0.8198 1500 nan
0.0 0.8472 1550 nan
0.0 0.8745 1600 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Romain-XV/d1949c4a-0a6f-4ea8-9a91-961471599334

Adapter
(123)
this model