Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.1-Storm-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b51894bc358e69ef_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b51894bc358e69ef_train_data.json
  type:
    field_instruction: question_en
    field_output: chosen_en
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/8b6619f1-e8e2-4475-a003-33211e86f690
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/b51894bc358e69ef_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 80865761-d38a-4c48-9ea1-fb8848e26565
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 80865761-d38a-4c48-9ea1-fb8848e26565
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

8b6619f1-e8e2-4475-a003-33211e86f690

This model is a fine-tuned version of unsloth/Llama-3.1-Storm-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
2.0186 0.0008 1 2.0494
1.4436 0.0406 50 1.3902
1.2774 0.0812 100 1.3402
1.3279 0.1218 150 1.3092
1.2515 0.1625 200 1.2914
1.2672 0.2031 250 1.2785
1.2416 0.2437 300 1.2647
1.2159 0.2843 350 1.2555
1.1702 0.3249 400 1.2434
1.2178 0.3655 450 1.2364
1.3226 0.4062 500 1.2286
1.1198 0.4468 550 1.2208
1.2484 0.4874 600 1.2148
1.1048 0.5280 650 1.2099
1.2055 0.5686 700 1.2041
1.219 0.6092 750 1.1982
1.2205 0.6498 800 1.1918
1.275 0.6905 850 1.1856
1.1738 0.7311 900 1.1803
1.1674 0.7717 950 1.1752
1.1784 0.8123 1000 1.1705
1.1904 0.8529 1050 1.1673
1.1293 0.8935 1100 1.1626
1.1344 0.9342 1150 1.1571
1.1763 0.9748 1200 1.1534
1.0566 1.0154 1250 1.1584
1.0529 1.0560 1300 1.1588
1.1357 1.0966 1350 1.1547
1.0739 1.1372 1400 1.1519
0.9531 1.1778 1450 1.1495
1.0049 1.2185 1500 1.1456
0.9675 1.2591 1550 1.1431
0.9961 1.2997 1600 1.1408
0.9481 1.3403 1650 1.1355
0.9777 1.3809 1700 1.1339
1.031 1.4215 1750 1.1327
1.0313 1.4622 1800 1.1315
0.932 1.5028 1850 1.1272
1.003 1.5434 1900 1.1260
1.0032 1.5840 1950 1.1236
0.913 1.6246 2000 1.1231
0.9941 1.6652 2050 1.1222
0.9415 1.7058 2100 1.1204
1.0222 1.7465 2150 1.1188
0.9803 1.7871 2200 1.1183
0.9454 1.8277 2250 1.1181
0.988 1.8683 2300 1.1182
0.9538 1.9089 2350 1.1179
0.9843 1.9495 2400 1.1179
0.8832 1.9902 2450 1.1177

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Romain-XV/8b6619f1-e8e2-4475-a003-33211e86f690

Adapter
(260)
this model