Quantization made by Richard Erkhov.
ValueLlama-3-8B - GGUF
- Model creator: https://huggingface.co/Value4AI/
- Original model: https://huggingface.co/Value4AI/ValueLlama-3-8B/
Name | Quant method | Size |
---|---|---|
ValueLlama-3-8B.Q2_K.gguf | Q2_K | 2.96GB |
ValueLlama-3-8B.IQ3_XS.gguf | IQ3_XS | 3.28GB |
ValueLlama-3-8B.IQ3_S.gguf | IQ3_S | 3.43GB |
ValueLlama-3-8B.Q3_K_S.gguf | Q3_K_S | 3.41GB |
ValueLlama-3-8B.IQ3_M.gguf | IQ3_M | 3.52GB |
ValueLlama-3-8B.Q3_K.gguf | Q3_K | 3.74GB |
ValueLlama-3-8B.Q3_K_M.gguf | Q3_K_M | 3.74GB |
ValueLlama-3-8B.Q3_K_L.gguf | Q3_K_L | 4.03GB |
ValueLlama-3-8B.IQ4_XS.gguf | IQ4_XS | 4.18GB |
ValueLlama-3-8B.Q4_0.gguf | Q4_0 | 4.34GB |
ValueLlama-3-8B.IQ4_NL.gguf | IQ4_NL | 4.38GB |
ValueLlama-3-8B.Q4_K_S.gguf | Q4_K_S | 4.37GB |
ValueLlama-3-8B.Q4_K.gguf | Q4_K | 4.58GB |
ValueLlama-3-8B.Q4_K_M.gguf | Q4_K_M | 4.58GB |
ValueLlama-3-8B.Q4_1.gguf | Q4_1 | 4.78GB |
ValueLlama-3-8B.Q5_0.gguf | Q5_0 | 5.21GB |
ValueLlama-3-8B.Q5_K_S.gguf | Q5_K_S | 5.21GB |
ValueLlama-3-8B.Q5_K.gguf | Q5_K | 5.34GB |
ValueLlama-3-8B.Q5_K_M.gguf | Q5_K_M | 5.34GB |
ValueLlama-3-8B.Q5_1.gguf | Q5_1 | 5.65GB |
ValueLlama-3-8B.Q6_K.gguf | Q6_K | 6.14GB |
ValueLlama-3-8B.Q8_0.gguf | Q8_0 | 7.95GB |
Original model description:
library_name: transformers tags: - llama-factory license: llama3 datasets: - allenai/ValuePrism - Value4AI/ValueBench language: - en
Model Card for ValueLlama
Model Description
ValueLlama is designed for perception-level value measurement in an open-ended value space, which includes two tasks: (1) Relevance classification determines whether a perception is relevant to a value; and (2) Valence classification determines whether a perception supports, opposes, or remains neutral (context-dependent) towards a value. Both tasks are formulated as generating a label given a value and a perception.
- Model type: Language model
- Language(s) (NLP): en
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
Paper
For more information, please refer to our paper: Measuring Human and AI Values based on Generative Psychometrics with Large Language Models.
Uses
It is intended for use in research to measure human/AI values and conduct related analyses.
See our codebase for more details: https://github.com/Value4AI/gpv.
BibTeX:
If you find this model helpful, we would appreciate it if you cite our paper:
@misc{ye2024gpv,
title={Measuring Human and AI Values based on Generative Psychometrics with Large Language Models},
author={Haoran Ye and Yuhang Xie and Yuanyi Ren and Hanjun Fang and Xin Zhang and Guojie Song},
year={2024},
eprint={2409.12106},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.12106},
}
- Downloads last month
- 14