|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
Pretrain-Qwen-1.2B - GGUF |
|
- Model creator: https://huggingface.co/MiniLLM/ |
|
- Original model: https://huggingface.co/MiniLLM/Pretrain-Qwen-1.2B/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [Pretrain-Qwen-1.2B.Q2_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q2_K.gguf) | Q2_K | 0.51GB | |
|
| [Pretrain-Qwen-1.2B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q3_K_S.gguf) | Q3_K_S | 0.57GB | |
|
| [Pretrain-Qwen-1.2B.Q3_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q3_K.gguf) | Q3_K | 0.61GB | |
|
| [Pretrain-Qwen-1.2B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q3_K_M.gguf) | Q3_K_M | 0.61GB | |
|
| [Pretrain-Qwen-1.2B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q3_K_L.gguf) | Q3_K_L | 0.63GB | |
|
| [Pretrain-Qwen-1.2B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.IQ4_XS.gguf) | IQ4_XS | 0.65GB | |
|
| [Pretrain-Qwen-1.2B.Q4_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q4_0.gguf) | Q4_0 | 0.67GB | |
|
| [Pretrain-Qwen-1.2B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.IQ4_NL.gguf) | IQ4_NL | 0.67GB | |
|
| [Pretrain-Qwen-1.2B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q4_K_S.gguf) | Q4_K_S | 0.69GB | |
|
| [Pretrain-Qwen-1.2B.Q4_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q4_K.gguf) | Q4_K | 0.72GB | |
|
| [Pretrain-Qwen-1.2B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q4_K_M.gguf) | Q4_K_M | 0.72GB | |
|
| [Pretrain-Qwen-1.2B.Q4_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q4_1.gguf) | Q4_1 | 0.72GB | |
|
| [Pretrain-Qwen-1.2B.Q5_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q5_0.gguf) | Q5_0 | 0.78GB | |
|
| [Pretrain-Qwen-1.2B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q5_K_S.gguf) | Q5_K_S | 0.79GB | |
|
| [Pretrain-Qwen-1.2B.Q5_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q5_K.gguf) | Q5_K | 0.81GB | |
|
| [Pretrain-Qwen-1.2B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q5_K_M.gguf) | Q5_K_M | 0.81GB | |
|
| [Pretrain-Qwen-1.2B.Q5_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q5_1.gguf) | Q5_1 | 0.83GB | |
|
| [Pretrain-Qwen-1.2B.Q6_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q6_K.gguf) | Q6_K | 0.93GB | |
|
| [Pretrain-Qwen-1.2B.Q8_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_Pretrain-Qwen-1.2B-gguf/blob/main/Pretrain-Qwen-1.2B.Q8_0.gguf) | Q8_0 | 1.15GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- monology/pile-uncopyrighted |
|
- MiniLLM/pile-tokenized |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Pretrain-Qwen-1.2B |
|
|
|
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) |
|
|
|
**Pretrain-Qwen-1.2B** is a 1.2B model with Qwen achitecture conventionally pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) for 50B tokens. |
|
|
|
We also open-source the tokenized [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-tokenized) for reproducibility. |
|
|
|
**It is used as the baseline for [MiniLLM-Qwen-1.2B](https://huggingface.co/MiniLLM/MiniPLM-Qwen-1.2B)** |
|
|
|
## Evaluation |
|
|
|
MiniPLM models achieves better performance given the same computation and scales well across model sizes: |
|
|
|
<p align='left'> |
|
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F624ac662102fcdff87be51b9%2FEOYzajQcwQFT5PobqL3j0.png%26quot%3B width="1000"> |
|
</p> |
|
|
|
## Other Baselines |
|
+ [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-1.2B) |
|
|
|
## Citation |
|
|
|
```bibtext |
|
@article{miniplm, |
|
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, |
|
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, |
|
journal={arXiv preprint arXiv:2410.17215}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|