RenAaron Ellis
Training in progress epoch 5
93dc2b3
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - tensorflow
  - vision
  - generated_from_keras_callback
model-index:
  - name: RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification
    results: []

RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3712
  • Train Accuracy: 0.9621
  • Validation Loss: 0.3312
  • Validation Accuracy: 0.9621
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1.0, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
2.0107 0.8548 1.5288 0.8548 0
1.3538 0.9149 0.9913 0.9149 1
0.9517 0.934 0.7421 0.9340 2
0.6882 0.9467 0.5690 0.9467 3
0.4999 0.9554 0.4264 0.9554 4
0.3712 0.9621 0.3312 0.9621 5

Framework versions

  • Transformers 4.47.0.dev0
  • TensorFlow 2.18.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3