solar_10.7_darulm_unigram_proj_init_8node_darulm_part1_v3_1.0_512_12_02_24

This model is a fine-tuned version of ../solar_darulm_unigram_proj_init_17_01_24 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3397
  • Accuracy: 0.5164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: linear
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6722 0.01 500 2.4811 0.4951
2.6243 0.02 1000 2.4459 0.4999
2.6051 0.04 1500 2.4295 0.5025
2.5901 0.05 2000 2.4194 0.5037
2.5852 0.06 2500 2.4124 0.5049
2.5818 0.07 3000 2.4072 0.5054
2.5801 0.09 3500 2.4024 0.5059
2.5626 0.1 4000 2.3988 0.5070
2.5697 0.11 4500 2.3958 0.5073
2.5532 0.12 5000 2.3928 0.5079
2.5505 0.13 5500 2.3904 0.5080
2.5497 0.15 6000 2.3872 0.5086
2.5636 0.16 6500 2.3857 0.5089
2.5483 0.17 7000 2.3835 0.5092
2.5505 0.18 7500 2.3813 0.5097
2.5419 0.2 8000 2.3796 0.5096
2.5467 0.21 8500 2.3786 0.5099
2.5419 0.22 9000 2.3769 0.5102
2.5269 0.23 9500 2.3754 0.5105
2.5315 0.24 10000 2.3740 0.5106
2.5442 0.26 10500 2.3728 0.5108
2.5318 0.27 11000 2.3713 0.5112
2.5242 0.28 11500 2.3702 0.5113
2.5178 0.29 12000 2.3698 0.5112
2.5345 0.31 12500 2.3687 0.5114
2.531 0.32 13000 2.3675 0.5115
2.5304 0.33 13500 2.3661 0.5118
2.5264 0.34 14000 2.3653 0.5121
2.5281 0.35 14500 2.3647 0.5123
2.5259 0.37 15000 2.3636 0.5123
2.5075 0.38 15500 2.3629 0.5122
2.5147 0.39 16000 2.3621 0.5127
2.5137 0.4 16500 2.3611 0.5128
2.5206 0.42 17000 2.3603 0.5129
2.5153 0.43 17500 2.3597 0.5128
2.5184 0.44 18000 2.3590 0.5130
2.5104 0.45 18500 2.3581 0.5132
2.5085 0.46 19000 2.3577 0.5134
2.509 0.48 19500 2.3572 0.5135
2.5143 0.49 20000 2.3564 0.5135
2.5124 0.5 20500 2.3555 0.5137
2.5107 0.51 21000 2.3546 0.5139
2.5034 0.53 21500 2.3543 0.5140
2.4922 0.54 22000 2.3538 0.5139
2.514 0.55 22500 2.3532 0.5140
2.5199 0.56 23000 2.3527 0.5141
2.4926 0.57 23500 2.3521 0.5142
2.5104 0.59 24000 2.3517 0.5142
2.5067 0.6 24500 2.3511 0.5144
2.5055 0.61 25000 2.3508 0.5142
2.5011 0.62 25500 2.3502 0.5146
2.4931 0.64 26000 2.3496 0.5147
2.4965 0.65 26500 2.3491 0.5147
2.495 0.66 27000 2.3488 0.5146
2.5051 0.67 27500 2.3481 0.5150
2.51 0.68 28000 2.3478 0.5150
2.4883 0.7 28500 2.3474 0.5152
2.4973 0.71 29000 2.3470 0.5151
2.4939 0.72 29500 2.3464 0.5153
2.4952 0.73 30000 2.3461 0.5153
2.5028 0.75 30500 2.3459 0.5154
2.4979 0.76 31000 2.3454 0.5154
2.4928 0.77 31500 2.3450 0.5155
2.501 0.78 32000 2.3446 0.5156
2.5 0.79 32500 2.3443 0.5156
2.4865 0.81 33000 2.3438 0.5156
2.4898 0.82 33500 2.3434 0.5157
2.4977 0.83 34000 2.3430 0.5160
2.4904 0.84 34500 2.3427 0.5157
2.4779 0.86 35000 2.3424 0.5159
2.4792 0.87 35500 2.3420 0.5159
2.4931 0.88 36000 2.3419 0.5160
2.4997 0.89 36500 2.3416 0.5160
2.4986 0.9 37000 2.3414 0.5161
2.4965 0.92 37500 2.3411 0.5162
2.4743 0.93 38000 2.3409 0.5162
2.497 0.94 38500 2.3406 0.5163
2.4942 0.95 39000 2.3404 0.5162
2.4907 0.97 39500 2.3402 0.5163
2.4821 0.98 40000 2.3400 0.5163
2.4857 0.99 40500 2.3398 0.5163

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
48
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RefalMachine/ruadapt_solar_10.7_part1

Finetuned
(42)
this model
Finetunes
1 model

Spaces using RefalMachine/ruadapt_solar_10.7_part1 6