|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- RedHenLabs/qa-news-2016 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
|
|
<h1 style="text-align: center;">News reporter 3B LLM</h1> |
|
<p align="center"> |
|
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F630f3058236215d0b7078806%2FX-5xrU0p6EEVl-aKgnCXO.png%26quot%3B%3C%2Fspan%3E alt="Image" width="450" height="400"> |
|
</p> |
|
|
|
|
|
## Model Description |
|
|
|
News Reporter 3B LLM is based on Phi-3 Mini-4K Instruct a dense decoder-only Transformer model designed to generate high-quality text based on user prompts. With 3.8 billion parameters, the model is fine-tuned using Supervised Fine-Tuning (SFT) to align with human preferences and question answer pairs. |
|
|
|
## Base Model |
|
|
|
We evaluated multiple off-the-shelf models, including Gemma-7B, Gemma-2B, Llama-3-8B, and Phi-3-mini-4K, and found that the Phi-3-mini-4K model performed best overall for our evaluation set. This model excels in multilingual query understanding and response generation, thanks to its 3.8 billion parameters and a 4096 context window length. Trained with over 3.3 trillion tokens, Phi-3-mini-4K stands out for its ability to be quantized to 4 bits, reducing its memory footprint to around 1.8 GB. It processes 8 to 12 tokens per second on a single T4 GPU, requiring just 3-4 GB of VRAM for inference. |
|
|
|
### Key Features: |
|
|
|
- Parameter Count: 3.8 billion. |
|
- Architecture: Dense decoder-only Transformer. |
|
- Context Length: Supports up to 4,000 tokens. |
|
- Training Data: 43.5K+ question and answer pairs curated from different News channel. |
|
|
|
## Inference |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline,set_seed |
|
|
|
model_name = "RedHenLabs/news-reporter-3b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto", device_map="cuda") |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def test_inference(prompt): |
|
prefix = "Generate a concise and accurate news summary based on the following question.\n Input:" |
|
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prefix+prompt}], tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.1, top_k=50, top_p=0.95, |
|
max_time= 180) |
|
return outputs[0]['generated_text'][len(prompt):].strip() |
|
|
|
res = test_inference(" What is the status of the evacuations and the condition of those injured?") |
|
print(res) |
|
``` |
|
|
|
## Model Benchmark |
|
|
|
| (0 Shot) | News-reporter-3b | Phi-3-mini-4k | Gemma-7b-it | Llama-2-7B | Mistral-7B-Instruct-v0.2 | |
|
|----------------------|------------------|---------------|-------------|------------|--------------------------| |
|
| MMLU | 69.49 | **69.90** | 64.3 | 45.3 | 59.02 | |
|
| ARC_C | **56.40** | 56.14 | 53.2 | 45.9 | 55.89 | |
|
| Winogrande | **74.19** | 73.24 | 68.03 | 69.5 | 73.72 | |
|
| Truthfulqa | 50.43 | **66.46** | 44.18 | 57.4 | 53.00 | |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@misc {lucifertrj, |
|
author = { {Tarun Jain} }, |
|
title = { News Reporter 3B by Red Hen Lab part of Google Summer of Code 2024}, |
|
year = 2024, |
|
url = { https://huggingface.co/RedHenLabs/news-reporter-3b }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |
|
|
|
arxiv.org/abs/2410.07520 |
|
|