opus-mt-zh-en

This model is a fine-tuned version of Helsinki-NLP/opus-mt-zh-en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8613
  • Bleu: 13.0199
  • Gen Len: 49.2694

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 216 3.1562 9.7872 49.7879
No log 2.0 432 3.0605 10.6493 49.7439
3.6494 3.0 648 3.0039 11.4679 50.5029
3.6494 4.0 864 2.9570 11.6395 48.376
3.2441 5.0 1080 2.9336 12.1975 49.7039
3.2441 6.0 1296 2.9141 12.6291 50.3876
3.0929 7.0 1512 2.8906 12.5445 48.6929
3.0929 8.0 1728 2.8789 12.7907 48.8441
3.0929 9.0 1944 2.8535 13.0215 49.3418
2.9838 10.0 2160 2.8613 13.0199 49.2694

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Rawsand/opus-mt-zh-en

Adapter
(2)
this model