model_result

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6132
  • Accuracy: 0.9038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 1.6081 0.1538
No log 1.8462 6 1.5995 0.1731
No log 2.7692 9 1.5848 0.25
1.598 4.0 13 1.5500 0.3365
1.598 4.9231 16 1.5076 0.4904
1.598 5.8462 19 1.4453 0.6827
1.5052 6.7692 22 1.3662 0.6731
1.5052 8.0 26 1.2518 0.7212
1.5052 8.9231 29 1.1767 0.7308
1.2847 9.8462 32 1.1189 0.6923
1.2847 10.7692 35 1.0484 0.7596
1.2847 12.0 39 1.0011 0.7115
1.081 12.9231 42 0.9297 0.7692
1.081 13.8462 45 0.9014 0.7404
1.081 14.7692 48 0.8527 0.7692
0.9228 16.0 52 0.7915 0.8462
0.9228 16.9231 55 0.8105 0.75
0.9228 17.8462 58 0.7530 0.7885
0.7978 18.7692 61 0.7055 0.8558
0.7978 20.0 65 0.6827 0.8846
0.7978 20.9231 68 0.6725 0.8654
0.6996 21.8462 71 0.6646 0.875
0.6996 22.7692 74 0.6351 0.9038
0.6996 24.0 78 0.6202 0.9135
0.6471 24.9231 81 0.6186 0.9038
0.6471 25.8462 84 0.6157 0.8942
0.6471 26.7692 87 0.6148 0.8942
0.6172 27.6923 90 0.6132 0.9038

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Rasi1610/model_result

Finetuned
(695)
this model