TrOCR-Sinhala

See training metrics tab for performance details.

Model description

This model is finetuned version of Microsoft TrOCR Printed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Example

from PIL import Image
import requests
from io import BytesIO

from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer

image_url = "/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%2Fassets%2FRansaka%2Fsinhala_synthetic_ocr%2F--%2Fbf7c8a455b564cd73fe035031e19a5f39babb73b%2F--%2Fdefault%2Ftrain%2F0%2Fimage%2Fimage.jpg"
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))

processor = TrOCRProcessor.from_pretrained('Ransaka/TrOCR-Sinhala')
model = VisionEncoderDecoderModel.from_pretrained('Ransaka/TrOCR-Sinhala')
model.to("cuda:0")

pixel_values = processor(img, return_tensors="pt").pixel_values.to('cuda:0')  
generated_ids = model.generate(pixel_values,num_beams=2,early_stopping=True)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
generated_text #දිවයිනට බලයට ඇති ආපදා තත්ත්වය හමුවේ සබරගමුව පළාතේ

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
31
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Ransaka/TrOCR-Sinhala

Finetuned
(2)
this model