electra-copec-2 / README.md
RafaelMayer's picture
Training in progress epoch 1
3de5ed4
|
raw
history blame
2.53 kB
metadata
base_model: mrm8488/electricidad-base-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: RafaelMayer/electra-copec-2
    results: []

RafaelMayer/electra-copec-2

This model is a fine-tuned version of mrm8488/electricidad-base-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.7303
  • Validation Loss: 0.6874
  • Train Accuracy: 0.8824
  • Train Precision: [0.75 0.92307692]
  • Train Precision W: 0.8824
  • Train Recall: [0.75 0.92307692]
  • Train Recall W: 0.8824
  • Train F1: [0.75 0.92307692]
  • Train F1 W: 0.8824
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Train Precision Train Precision W Train Recall Train Recall W Train F1 Train F1 W Epoch
0.7303 0.6874 0.8824 [0.75 0.92307692] 0.8824 [0.75 0.92307692] 0.8824 [0.75 0.92307692] 0.8824 1

Framework versions

  • Transformers 4.32.1
  • TensorFlow 2.12.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3