Model card for Mistral-Instruct-Ukrainian-SFT
Supervised finetuning of Mistral-7B-Instruct-v0.2 on Ukrainian datasets.
Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST]
and [/INST]
tokens.
E.g.
text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]"
This format is available as a chat template via the apply_chat_template()
method:
Model Architecture
This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
Datasets
- UA-SQUAD
- Ukrainian StackExchange
- UAlpaca Dataset
- Ukrainian Subset from Belebele Dataset
- Ukrainian Subset from XQA
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Radu1999/Mistral-Instruct-Ukrainian-SFT"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Author
Radu Chivereanu
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.17 |
AI2 Reasoning Challenge (25-Shot) | 57.85 |
HellaSwag (10-Shot) | 83.12 |
MMLU (5-Shot) | 60.95 |
TruthfulQA (0-shot) | 54.14 |
Winogrande (5-shot) | 77.51 |
GSM8k (5-shot) | 39.42 |
- Downloads last month
- 99
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Radu1999/Mistral-Instruct-Ukrainian-SFT
Spaces using Radu1999/Mistral-Instruct-Ukrainian-SFT 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard57.850
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard83.120
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard60.950
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard54.140
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.510
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard39.420