testing for inference endpoints

#57
by nbroad HF staff - opened
Files changed (2) hide show
  1. handler.py +60 -0
  2. requirements.txt +2 -0
handler.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
2
+ from qwen_vl_utils import process_vision_info
3
+
4
+
5
+
6
+ class EndpointHandler():
7
+
8
+ def __init__(self, path):
9
+ # default: Load the model on the available device(s)
10
+ self.model = Qwen2VLForConditionalGeneration.from_pretrained(
11
+ path, torch_dtype="auto", device_map="auto",
12
+ )
13
+
14
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
15
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
16
+ # path,
17
+ # torch_dtype=torch.bfloat16,
18
+ # attn_implementation="flash_attention_2",
19
+ # device_map="auto",
20
+ # )
21
+
22
+ # default processer
23
+ self.processor = AutoProcessor.from_pretrained(path)
24
+
25
+ # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
26
+ # min_pixels = 256*28*28
27
+ # max_pixels = 1280*28*28
28
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
29
+
30
+
31
+
32
+ def __call__(self, data):
33
+
34
+ text = self.processor.apply_chat_template(
35
+ data["messages"], tokenize=False, add_generation_prompt=True
36
+ )
37
+ image_inputs, video_inputs = process_vision_info(data["messages"])
38
+
39
+ inputs = self.processor(
40
+ text=[text],
41
+ images=image_inputs,
42
+ videos=video_inputs,
43
+ padding=True,
44
+ return_tensors="pt",
45
+ )
46
+
47
+ inputs = inputs.to(self.model.device)
48
+
49
+ # Inference: Generation of the output
50
+ generated_ids = self.model.generate(**inputs, max_new_tokens=data.get("max_new_tokens", 128))
51
+ generated_ids_trimmed = [
52
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
53
+ ]
54
+ output_text = self.processor.batch_decode(
55
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
56
+ )
57
+ return {
58
+ "output": output_text,
59
+ }
60
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ qwen-vl-utils
2
+ git+https://github.com/huggingface/transformers.git@b99ca4d28b47fa7166e7882cb0695a5c0cc0d411