metadata
license: apache-2.0
license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
- chat
library_name: transformers
QwQ-32B-Preview
Introduction
QwQ-32B-Preview is an experimental version developed by the Qwen Team as part of our efforts to create a reasoning model. It currently has the following limitations:
- Code Switching: There may be instances of mixed languages in responses.
- Endless Repetition: For certain complex logical problems, the model might engage in repetitive reasoning without reaching a answer.
- Safety Concerns: The model's safety measures need further enhancement to ensure reliable and secure performance.
- Performance: QwQ-32B-preview is just our early experimental version, and it has only been optimized for reasoning tasks such as Code and Math.
Specification:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 32,768 tokens
For more details, please refer to our blog. You can also check Qwen2.5 GitHub, and Documentation.
Requirements
The code of Qwen2.5 has been in the latest Hugging face transformers
and we advise you to use the latest version of transformers
.
With transformers<4.37.0
, you will encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwq-32b-preview,
title = {QwQ: Reflect Deeply on the Boundaries of the Unknown},
url = {https://qwenlm.github.io/blog/qwq-32b-preview/},
author = {Qwen Team},
month = {November},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}