|
--- |
|
base_model: macadeliccc/Samantha-Qwen-2-7B |
|
datasets: |
|
- macadeliccc/opus_samantha |
|
- HuggingfaceH4/ultrachat_200k |
|
- teknium/OpenHermes-2.5 |
|
- Sao10K/Claude-3-Opus-Instruct-15K |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- zh |
|
pipeline_tag: text-generation |
|
--- |
|
# Samantha Qwen2 7B-GGUF |
|
This is quantized version of [macadeliccc/Samantha-Qwen-2-7B](https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B) created using llama.cpp |
|
|
|
# Model Description |
|
|
|
Trained on 2x4090 using QLoRa and FSDP |
|
|
|
+ [LoRa](macadeliccc/Samantha-Qwen2-7B-LoRa) |
|
|
|
## Launch Using VLLM |
|
|
|
```bash |
|
python -m vllm.entrypoints.openai.api_server \ |
|
--model macadeliccc/Samantha-Qwen-2-7B \ |
|
--chat-template ./examples/template_chatml.jinja \ |
|
``` |
|
|
|
```python |
|
from openai import OpenAI |
|
# Set OpenAI's API key and API base to use vLLM's API server. |
|
openai_api_key = "EMPTY" |
|
openai_api_base = "http://localhost:8000/v1" |
|
|
|
client = OpenAI( |
|
api_key=openai_api_key, |
|
base_url=openai_api_base, |
|
) |
|
|
|
chat_response = client.chat.completions.create( |
|
model="macadeliccc/Samantha-Qwen-2-7B", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": "Tell me a joke."}, |
|
] |
|
) |
|
print("Chat response:", chat_response) |
|
``` |
|
|
|
## Prompt Template |
|
|
|
``` |
|
<|im_start|>system |
|
You are a friendly assistant.<|im_end|> |
|
<|im_start|>user |
|
What is the capital of France?<|im_end|> |
|
<|im_start|>assistant |
|
The capital of France is Paris. |
|
``` |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: Qwen/Qwen-7B |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
trust_remote_code: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: macadeliccc/opus_samantha |
|
type: sharegpt |
|
field: conversations |
|
conversation: chatml |
|
- path: uncensored-ultrachat.json |
|
type: sharegpt |
|
field: conversations |
|
conversation: chatml |
|
- path: openhermes_200k.json |
|
type: sharegpt |
|
field: conversations |
|
conversation: chatml |
|
- path: opus_instruct.json |
|
type: sharegpt |
|
field: conversations |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/lora-out |
|
|
|
sequence_len: 2048 |
|
sample_packing: false |
|
pad_to_sequence_len: |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: |
|
|
|
warmup_steps: 250 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
``` |
|
|
|
</details><br> |