metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- arcee-ai/SuperNova-Medius
- huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
- allura-org/TQ2.5-14B-Aletheia-v1
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- v000000/Qwen2.5-Lumen-14B
model-index:
- name: Q2.5-Veltha-14B-0.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.96
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.32
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 33.84
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.77
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.17
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.72
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/Q2.5-Veltha-14B-0.5
name: Open LLM Leaderboard
QuantFactory/Q2.5-Veltha-14B-0.5-GGUF
This is quantized version of djuna/Q2.5-Veltha-14B-0.5 created using llama.cpp
Original Model Card
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the della_linear merge method using arcee-ai/SuperNova-Medius as a base.
Models Merged
The following models were included in the merge:
- huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
- allura-org/TQ2.5-14B-Aletheia-v1
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- v000000/Qwen2.5-Lumen-14B
Configuration
The following YAML configuration was used to produce this model:
merge_method: della_linear
dtype: float32
out_dtype: bfloat16
parameters:
epsilon: 0.04
lambda: 1.05
normalize: true
base_model: arcee-ai/SuperNova-Medius
tokenizer_source: arcee-ai/SuperNova-Medius
models:
- model: arcee-ai/SuperNova-Medius
parameters:
weight: 10
density: 1
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
parameters:
weight: 7
density: 0.5
- model: v000000/Qwen2.5-Lumen-14B
parameters:
weight: 7
density: 0.4
- model: allura-org/TQ2.5-14B-Aletheia-v1
parameters:
weight: 8
density: 0.4
- model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
parameters:
weight: 8
density: 0.45
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 39.96 |
IFEval (0-Shot) | 77.96 |
BBH (3-Shot) | 50.32 |
MATH Lvl 5 (4-Shot) | 33.84 |
GPQA (0-shot) | 15.77 |
MuSR (0-shot) | 14.17 |
MMLU-PRO (5-shot) | 47.72 |