QuantFactory Banner

QuantFactory/Fatgirl_v2_8B-GGUF

This is quantized version of FourOhFour/Fatgirl_v2_8B created using llama.cpp

Original Model Card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: FourOhFour/Magic_v2_8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: ResplendentAI/bluemoon
    type: sharegpt
    conversation: chatml
  - path: openerotica/freedom-rp
    type: sharegpt
    conversation: chatml
  - path: MinervaAI/Aesir-Preview
    type: sharegpt
    conversation: chatml
  - path: anthracite-core/c2_logs_32k_v1.1
    type: sharegpt
    conversation: chatml
  - path: Nitral-AI/Creative_Writing-ShareGPT
    type: sharegpt
    conversation: chatml
  - path: PJMixers/lodrick-the-lafted_OpusStories-Story2Prompt-ShareGPT
    type: sharegpt
    conversation: chatml

chat_template: chatml

val_set_size: 0.002
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: mini8B
wandb_entity:
wandb_watch:
wandb_name: mini8B
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:

special_tokens:
  pad_token: <pad>

outputs/out

This model is a fine-tuned version of FourOhFour/Magic_v2_8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 58
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.7471 0.0034 1 2.8918
1.5602 0.2507 74 2.7319
1.4587 0.5015 148 2.6953
1.5022 0.7522 222 2.6729
1.4152 1.0030 296 2.6487
1.2528 1.2501 370 2.6922
1.2245 1.5002 444 2.6843
1.2803 1.7503 518 2.6845

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
GGUF
Model size
8.41B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for QuantFactory/Fatgirl_v2_8B-GGUF