|
|
|
--- |
|
|
|
license: llama2 |
|
inference: |
|
parameters: |
|
do_sample: false |
|
max_length: 200 |
|
base_model: meta-llama/Llama-2-7b |
|
widget: |
|
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" |
|
example_title: "read test.csv" |
|
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" |
|
example_title: "get _amount columns" |
|
- text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.\n\n### Input:\nHere is the database schema that the SQL query will run on:\nCREATE TABLE rideshare (\n hvfhs_license_num varchar,\n dispatching_base_num varchar,\n originating_base_num varchar,\n request_datetime timestamp,\n on_scene_datetime timestamp,\n pickup_datetime timestamp,\n dropoff_datetime timestamp,\n trip_miles double,\n trip_time bigint,\n\n);\n\n### Question:\nget longest trip in december 2022\n\n### Response (use duckdb shorthand if possible):" |
|
example_title: "taxi trips" |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/DuckDB-NSQL-7B-v0.1-GGUF |
|
This is quantized version of [motherduckdb/DuckDB-NSQL-7B-v0.1](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
# DuckDB-NSQL-7B |
|
|
|
## Model Description |
|
|
|
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. |
|
|
|
In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs. |
|
|
|
## Training Data |
|
|
|
200k DuckDB text-to-SQL pairs, synthetically generated using [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot). |
|
|
|
## Evaluation Data |
|
|
|
We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/). |
|
|
|
## Training Procedure |
|
|
|
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs. |
|
|
|
## Intended Use and Limitations |
|
|
|
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs. |
|
In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions. |
|
|
|
## How to Use |
|
|
|
Example 1: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) |
|
|
|
text = """### Instruction: |
|
Your task is to generate valid duckdb SQL to answer the following question. |
|
|
|
### Input: |
|
|
|
### Question: |
|
create a new table called tmp from test.csv |
|
|
|
### Response (use duckdb shorthand if possible): |
|
""" |
|
|
|
input_ids = tokenizer(text, return_tensors="pt").input_ids |
|
|
|
generated_ids = model.generate(input_ids, max_length=500) |
|
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) |
|
``` |
|
|
|
Example 2: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) |
|
|
|
text = """### Instruction: |
|
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. |
|
|
|
### Input: |
|
Here is the database schema that the SQL query will run on: |
|
CREATE TABLE taxi ( |
|
VendorID bigint, |
|
tpep_pickup_datetime timestamp, |
|
tpep_dropoff_datetime timestamp, |
|
passenger_count double, |
|
trip_distance double, |
|
fare_amount double, |
|
extra double, |
|
tip_amount double, |
|
tolls_amount double, |
|
improvement_surcharge double, |
|
total_amount double, |
|
); |
|
|
|
### Question: |
|
get all columns ending with _amount from taxi table |
|
|
|
### Response (use duckdb shorthand if possible):""" |
|
|
|
input_ids = tokenizer(text, return_tensors="pt").input_ids |
|
|
|
generated_ids = model.generate(input_ids, max_length=500) |
|
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) |
|
``` |
|
|
|
Example 3: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16) |
|
|
|
text = """### Instruction: |
|
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. |
|
|
|
### Input: |
|
Here is the database schema that the SQL query will run on: |
|
CREATE TABLE rideshare ( |
|
hvfhs_license_num varchar, |
|
dispatching_base_num varchar, |
|
originating_base_num varchar, |
|
request_datetime timestamp, |
|
on_scene_datetime timestamp, |
|
pickup_datetime timestamp, |
|
dropoff_datetime timestamp, |
|
trip_miles double, |
|
trip_time bigint, |
|
|
|
); |
|
|
|
### Question: |
|
get longest trip in december 2022 |
|
|
|
### Response (use duckdb shorthand if possible): |
|
""" |
|
|
|
input_ids = tokenizer(text, return_tensors="pt").input_ids |
|
|
|
generated_ids = model.generate(input_ids, max_length=500) |
|
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL). |
|
|