wangrongsheng
commited on
Commit
·
780f3fa
1
Parent(s):
43646eb
add v2
Browse files- LLM-Detector-V2-11w/README.md +56 -0
- LLM-Detector-V2-11w/adapter_config.json +22 -0
- LLM-Detector-V2-11w/adapter_model.bin +3 -0
- LLM-Detector-V2-11w/all_results.json +7 -0
- LLM-Detector-V2-11w/checkpoint-10000/README.md +219 -0
- LLM-Detector-V2-11w/checkpoint-10000/adapter_config.json +22 -0
- LLM-Detector-V2-11w/checkpoint-10000/adapter_model.bin +3 -0
- LLM-Detector-V2-11w/checkpoint-10000/optimizer.pt +3 -0
- LLM-Detector-V2-11w/checkpoint-10000/qwen.tiktoken +0 -0
- LLM-Detector-V2-11w/checkpoint-10000/rng_state.pth +3 -0
- LLM-Detector-V2-11w/checkpoint-10000/scheduler.pt +3 -0
- LLM-Detector-V2-11w/checkpoint-10000/special_tokens_map.json +7 -0
- LLM-Detector-V2-11w/checkpoint-10000/tokenization_qwen.py +276 -0
- LLM-Detector-V2-11w/checkpoint-10000/tokenizer_config.json +13 -0
- LLM-Detector-V2-11w/checkpoint-10000/trainer_state.json +619 -0
- LLM-Detector-V2-11w/checkpoint-10000/training_args.bin +3 -0
- LLM-Detector-V2-11w/checkpoint-5000/README.md +219 -0
- LLM-Detector-V2-11w/checkpoint-5000/adapter_config.json +22 -0
- LLM-Detector-V2-11w/checkpoint-5000/adapter_model.bin +3 -0
- LLM-Detector-V2-11w/checkpoint-5000/optimizer.pt +3 -0
- LLM-Detector-V2-11w/checkpoint-5000/qwen.tiktoken +0 -0
- LLM-Detector-V2-11w/checkpoint-5000/rng_state.pth +3 -0
- LLM-Detector-V2-11w/checkpoint-5000/scheduler.pt +3 -0
- LLM-Detector-V2-11w/checkpoint-5000/special_tokens_map.json +7 -0
- LLM-Detector-V2-11w/checkpoint-5000/tokenization_qwen.py +276 -0
- LLM-Detector-V2-11w/checkpoint-5000/tokenizer_config.json +13 -0
- LLM-Detector-V2-11w/checkpoint-5000/trainer_state.json +319 -0
- LLM-Detector-V2-11w/checkpoint-5000/training_args.bin +3 -0
- LLM-Detector-V2-11w/qwen.tiktoken +0 -0
- LLM-Detector-V2-11w/special_tokens_map.json +7 -0
- LLM-Detector-V2-11w/tokenization_qwen.py +276 -0
- LLM-Detector-V2-11w/tokenizer_config.json +13 -0
- LLM-Detector-V2-11w/train_results.json +7 -0
- LLM-Detector-V2-11w/trainer_log.jsonl +112 -0
- LLM-Detector-V2-11w/trainer_state.json +694 -0
- LLM-Detector-V2-11w/training_args.bin +3 -0
- LLM-Detector-V2-11w/training_loss.png +0 -0
LLM-Detector-V2-11w/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: ./Qwen-7B-Chat
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: qwen-7b
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# qwen-7b
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [./Qwen-7B-Chat](https://huggingface.co/./Qwen-7B-Chat) on the ta, the tb, the tc, the td, the te, the tf, the tg and the th datasets.
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 32
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- num_epochs: 3.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
### Framework versions
|
52 |
+
|
53 |
+
- Transformers 4.33.0
|
54 |
+
- Pytorch 2.1.1+cu121
|
55 |
+
- Datasets 2.14.7
|
56 |
+
- Tokenizers 0.13.3
|
LLM-Detector-V2-11w/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V2-11w/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa28fb27cb3e2ac4a0dcc009ae2625d376e7364c2e8d729cd3e3fe1fc668d427
|
3 |
+
size 16800174
|
LLM-Detector-V2-11w/all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.02652581251227368,
|
4 |
+
"train_runtime": 75119.2077,
|
5 |
+
"train_samples_per_second": 4.749,
|
6 |
+
"train_steps_per_second": 0.148
|
7 |
+
}
|
LLM-Detector-V2-11w/checkpoint-10000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V2-11w/checkpoint-10000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V2-11w/checkpoint-10000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:428b8088a29cff7c5c089fc070676ce5d5533d090968bef405cecf60563d7d89
|
3 |
+
size 16800174
|
LLM-Detector-V2-11w/checkpoint-10000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761aa59808bd5f017a6eda15a41348687530b88f7cd62c4d7b3c8b23e1b5ed04
|
3 |
+
size 33608634
|
LLM-Detector-V2-11w/checkpoint-10000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V2-11w/checkpoint-10000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c035419991828d3dd21375923850ee5fac9f2d49f2961f78cb1c9b4e67dafdc
|
3 |
+
size 14244
|
LLM-Detector-V2-11w/checkpoint-10000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b2a8d700988cc2f86488cac04f06e51e20e5906b4dba4ca183109282717cb7e
|
3 |
+
size 1064
|
LLM-Detector-V2-11w/checkpoint-10000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V2-11w/checkpoint-10000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V2-11w/checkpoint-10000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V2-11w/checkpoint-10000/trainer_state.json
ADDED
@@ -0,0 +1,619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.6907036189963676,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 10000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.9990073706856164e-05,
|
14 |
+
"loss": 2.2244,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.99603027099283e-05,
|
20 |
+
"loss": 0.0286,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.991071065046783e-05,
|
26 |
+
"loss": 0.0144,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.984133690970033e-05,
|
32 |
+
"loss": 0.0223,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.975223657755279e-05,
|
38 |
+
"loss": 0.0179,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.9643480408906496e-05,
|
44 |
+
"loss": 0.0246,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.951515476741036e-05,
|
50 |
+
"loss": 0.0181,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.936736155689918e-05,
|
56 |
+
"loss": 0.0155,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.920021814047156e-05,
|
62 |
+
"loss": 0.0122,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.901385724729137e-05,
|
68 |
+
"loss": 0.0128,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 4.880842686718711e-05,
|
74 |
+
"loss": 0.016,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 4.858409013313266e-05,
|
80 |
+
"loss": 0.0134,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 4.8341025191702847e-05,
|
86 |
+
"loss": 0.0099,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 4.80794250616066e-05,
|
92 |
+
"loss": 0.0102,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 4.7799497480410125e-05,
|
98 |
+
"loss": 0.0109,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 4.7501464739571836e-05,
|
104 |
+
"loss": 0.0117,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 4.7185563507919895e-05,
|
110 |
+
"loss": 0.0154,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 4.685204464371269e-05,
|
116 |
+
"loss": 0.0107,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 4.6501172995431424e-05,
|
122 |
+
"loss": 0.0133,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 4.6133227191463044e-05,
|
128 |
+
"loss": 0.0157,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.57,
|
133 |
+
"learning_rate": 4.574849941884044e-05,
|
134 |
+
"loss": 0.0115,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.59,
|
139 |
+
"learning_rate": 4.534729519121574e-05,
|
140 |
+
"loss": 0.0135,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.62,
|
145 |
+
"learning_rate": 4.492993310625088e-05,
|
146 |
+
"loss": 0.0104,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.65,
|
151 |
+
"learning_rate": 4.449674459261804e-05,
|
152 |
+
"loss": 0.0113,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.67,
|
157 |
+
"learning_rate": 4.404807364681105e-05,
|
158 |
+
"loss": 0.0075,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.7,
|
163 |
+
"learning_rate": 4.358427655997657e-05,
|
164 |
+
"loss": 0.011,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.73,
|
169 |
+
"learning_rate": 4.310572163498205e-05,
|
170 |
+
"loss": 0.0103,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.75,
|
175 |
+
"learning_rate": 4.2612788893945176e-05,
|
176 |
+
"loss": 0.0126,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.78,
|
181 |
+
"learning_rate": 4.2105869776456944e-05,
|
182 |
+
"loss": 0.0084,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.81,
|
187 |
+
"learning_rate": 4.158536682873821e-05,
|
188 |
+
"loss": 0.0069,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.83,
|
193 |
+
"learning_rate": 4.1051693383976264e-05,
|
194 |
+
"loss": 0.0089,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.86,
|
199 |
+
"learning_rate": 4.050527323409557e-05,
|
200 |
+
"loss": 0.0103,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.89,
|
205 |
+
"learning_rate": 3.994654029322313e-05,
|
206 |
+
"loss": 0.011,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.91,
|
211 |
+
"learning_rate": 3.937593825311575e-05,
|
212 |
+
"loss": 0.0063,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.94,
|
217 |
+
"learning_rate": 3.8793920230822925e-05,
|
218 |
+
"loss": 0.0091,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.97,
|
223 |
+
"learning_rate": 3.8200948408864986e-05,
|
224 |
+
"loss": 0.0072,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.0,
|
229 |
+
"learning_rate": 3.759749366821241e-05,
|
230 |
+
"loss": 0.007,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.02,
|
235 |
+
"learning_rate": 3.698403521435756e-05,
|
236 |
+
"loss": 0.0067,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 1.05,
|
241 |
+
"learning_rate": 3.636106019677602e-05,
|
242 |
+
"loss": 0.0055,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 1.08,
|
247 |
+
"learning_rate": 3.572906332207943e-05,
|
248 |
+
"loss": 0.0071,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.1,
|
253 |
+
"learning_rate": 3.5088546461167346e-05,
|
254 |
+
"loss": 0.0056,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.13,
|
259 |
+
"learning_rate": 3.4440018250689767e-05,
|
260 |
+
"loss": 0.0074,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.16,
|
265 |
+
"learning_rate": 3.3783993689137015e-05,
|
266 |
+
"loss": 0.0061,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.18,
|
271 |
+
"learning_rate": 3.312099372787772e-05,
|
272 |
+
"loss": 0.0051,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 1.21,
|
277 |
+
"learning_rate": 3.2451544857469436e-05,
|
278 |
+
"loss": 0.0078,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.24,
|
283 |
+
"learning_rate": 3.177617868957078e-05,
|
284 |
+
"loss": 0.0064,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.26,
|
289 |
+
"learning_rate": 3.109543153478671e-05,
|
290 |
+
"loss": 0.0064,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.29,
|
295 |
+
"learning_rate": 3.040984397678245e-05,
|
296 |
+
"loss": 0.0064,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.32,
|
301 |
+
"learning_rate": 2.9719960443004107e-05,
|
302 |
+
"loss": 0.0062,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.35,
|
307 |
+
"learning_rate": 2.9026328772347e-05,
|
308 |
+
"loss": 0.0056,
|
309 |
+
"step": 5000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 1.37,
|
313 |
+
"learning_rate": 2.8329499780114865e-05,
|
314 |
+
"loss": 0.0096,
|
315 |
+
"step": 5100
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 1.4,
|
319 |
+
"learning_rate": 2.763002682061555e-05,
|
320 |
+
"loss": 0.0054,
|
321 |
+
"step": 5200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 1.43,
|
325 |
+
"learning_rate": 2.6928465347740434e-05,
|
326 |
+
"loss": 0.0049,
|
327 |
+
"step": 5300
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 1.45,
|
331 |
+
"learning_rate": 2.6225372473876565e-05,
|
332 |
+
"loss": 0.0023,
|
333 |
+
"step": 5400
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.48,
|
337 |
+
"learning_rate": 2.552835016828629e-05,
|
338 |
+
"loss": 0.0065,
|
339 |
+
"step": 5500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.51,
|
343 |
+
"learning_rate": 2.4823871621313255e-05,
|
344 |
+
"loss": 0.0032,
|
345 |
+
"step": 5600
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.53,
|
349 |
+
"learning_rate": 2.411953293849365e-05,
|
350 |
+
"loss": 0.0043,
|
351 |
+
"step": 5700
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 1.56,
|
355 |
+
"learning_rate": 2.341589343760652e-05,
|
356 |
+
"loss": 0.0038,
|
357 |
+
"step": 5800
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 1.59,
|
361 |
+
"learning_rate": 2.271351188120813e-05,
|
362 |
+
"loss": 0.0048,
|
363 |
+
"step": 5900
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 1.61,
|
367 |
+
"learning_rate": 2.2012946032916717e-05,
|
368 |
+
"loss": 0.0082,
|
369 |
+
"step": 6000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.64,
|
373 |
+
"learning_rate": 2.1314752214490396e-05,
|
374 |
+
"loss": 0.0046,
|
375 |
+
"step": 6100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.67,
|
379 |
+
"learning_rate": 2.061948486405021e-05,
|
380 |
+
"loss": 0.0063,
|
381 |
+
"step": 6200
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.7,
|
385 |
+
"learning_rate": 1.992769609579885e-05,
|
386 |
+
"loss": 0.0052,
|
387 |
+
"step": 6300
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.72,
|
391 |
+
"learning_rate": 1.9239935261584917e-05,
|
392 |
+
"loss": 0.0041,
|
393 |
+
"step": 6400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 1.75,
|
397 |
+
"learning_rate": 1.8556748514660664e-05,
|
398 |
+
"loss": 0.004,
|
399 |
+
"step": 6500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.78,
|
403 |
+
"learning_rate": 1.7878678375979845e-05,
|
404 |
+
"loss": 0.0035,
|
405 |
+
"step": 6600
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.8,
|
409 |
+
"learning_rate": 1.7206263303379948e-05,
|
410 |
+
"loss": 0.0066,
|
411 |
+
"step": 6700
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 1.83,
|
415 |
+
"learning_rate": 1.654003726399097e-05,
|
416 |
+
"loss": 0.0047,
|
417 |
+
"step": 6800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.86,
|
421 |
+
"learning_rate": 1.5880529310210283e-05,
|
422 |
+
"loss": 0.005,
|
423 |
+
"step": 6900
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.88,
|
427 |
+
"learning_rate": 1.5228263159580275e-05,
|
428 |
+
"loss": 0.0033,
|
429 |
+
"step": 7000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.91,
|
433 |
+
"learning_rate": 1.4583756778902463e-05,
|
434 |
+
"loss": 0.0059,
|
435 |
+
"step": 7100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 1.94,
|
439 |
+
"learning_rate": 1.3947521972918251e-05,
|
440 |
+
"loss": 0.0051,
|
441 |
+
"step": 7200
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 1.96,
|
445 |
+
"learning_rate": 1.3320063977883046e-05,
|
446 |
+
"loss": 0.0041,
|
447 |
+
"step": 7300
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.99,
|
451 |
+
"learning_rate": 1.2701881060356396e-05,
|
452 |
+
"loss": 0.0049,
|
453 |
+
"step": 7400
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.02,
|
457 |
+
"learning_rate": 1.209346412152676e-05,
|
458 |
+
"loss": 0.0024,
|
459 |
+
"step": 7500
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 2.04,
|
463 |
+
"learning_rate": 1.149529630738521e-05,
|
464 |
+
"loss": 0.0035,
|
465 |
+
"step": 7600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 2.07,
|
469 |
+
"learning_rate": 1.0907852625057538e-05,
|
470 |
+
"loss": 0.0013,
|
471 |
+
"step": 7700
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 2.1,
|
475 |
+
"learning_rate": 1.0331599565599464e-05,
|
476 |
+
"loss": 0.0014,
|
477 |
+
"step": 7800
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 2.13,
|
481 |
+
"learning_rate": 9.766994733554432e-06,
|
482 |
+
"loss": 0.004,
|
483 |
+
"step": 7900
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 2.15,
|
487 |
+
"learning_rate": 9.214486483568307e-06,
|
488 |
+
"loss": 0.0021,
|
489 |
+
"step": 8000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 2.18,
|
493 |
+
"learning_rate": 8.674513564349376e-06,
|
494 |
+
"loss": 0.0025,
|
495 |
+
"step": 8100
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 2.21,
|
499 |
+
"learning_rate": 8.147504770256536e-06,
|
500 |
+
"loss": 0.0026,
|
501 |
+
"step": 8200
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 2.23,
|
505 |
+
"learning_rate": 7.633878600792143e-06,
|
506 |
+
"loss": 0.0018,
|
507 |
+
"step": 8300
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 2.26,
|
511 |
+
"learning_rate": 7.138971709507527e-06,
|
512 |
+
"loss": 0.0016,
|
513 |
+
"step": 8400
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 2.29,
|
517 |
+
"learning_rate": 6.653179652954706e-06,
|
518 |
+
"loss": 0.003,
|
519 |
+
"step": 8500
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 2.31,
|
523 |
+
"learning_rate": 6.181956869763645e-06,
|
524 |
+
"loss": 0.0011,
|
525 |
+
"step": 8600
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 2.34,
|
529 |
+
"learning_rate": 5.725677559572909e-06,
|
530 |
+
"loss": 0.0024,
|
531 |
+
"step": 8700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 2.37,
|
535 |
+
"learning_rate": 5.284704055357578e-06,
|
536 |
+
"loss": 0.0007,
|
537 |
+
"step": 8800
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 2.39,
|
541 |
+
"learning_rate": 4.859386535699373e-06,
|
542 |
+
"loss": 0.0017,
|
543 |
+
"step": 8900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 2.42,
|
547 |
+
"learning_rate": 4.4500627467086245e-06,
|
548 |
+
"loss": 0.0021,
|
549 |
+
"step": 9000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 2.45,
|
553 |
+
"learning_rate": 4.057057733818967e-06,
|
554 |
+
"loss": 0.0016,
|
555 |
+
"step": 9100
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.48,
|
559 |
+
"learning_rate": 3.680683583667599e-06,
|
560 |
+
"loss": 0.0013,
|
561 |
+
"step": 9200
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 2.5,
|
565 |
+
"learning_rate": 3.321239176266211e-06,
|
566 |
+
"loss": 0.0028,
|
567 |
+
"step": 9300
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 2.53,
|
571 |
+
"learning_rate": 2.9790099476593393e-06,
|
572 |
+
"loss": 0.0007,
|
573 |
+
"step": 9400
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 2.56,
|
577 |
+
"learning_rate": 2.654267663258628e-06,
|
578 |
+
"loss": 0.0026,
|
579 |
+
"step": 9500
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 2.58,
|
583 |
+
"learning_rate": 2.3472702020329696e-06,
|
584 |
+
"loss": 0.0013,
|
585 |
+
"step": 9600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.61,
|
589 |
+
"learning_rate": 2.0582613517259377e-06,
|
590 |
+
"loss": 0.0014,
|
591 |
+
"step": 9700
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 2.64,
|
595 |
+
"learning_rate": 1.7874706152630705e-06,
|
596 |
+
"loss": 0.0011,
|
597 |
+
"step": 9800
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.66,
|
601 |
+
"learning_rate": 1.5351130285028214e-06,
|
602 |
+
"loss": 0.0022,
|
603 |
+
"step": 9900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 2.69,
|
607 |
+
"learning_rate": 1.3036333720407912e-06,
|
608 |
+
"loss": 0.0012,
|
609 |
+
"step": 10000
|
610 |
+
}
|
611 |
+
],
|
612 |
+
"logging_steps": 100,
|
613 |
+
"max_steps": 11148,
|
614 |
+
"num_train_epochs": 3,
|
615 |
+
"save_steps": 5000,
|
616 |
+
"total_flos": 2.0893490293152154e+18,
|
617 |
+
"trial_name": null,
|
618 |
+
"trial_params": null
|
619 |
+
}
|
LLM-Detector-V2-11w/checkpoint-10000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2501d0db9b5d010a4a25759f877d55c11a9cd335425e4c2cc6f2683c0ebb1612
|
3 |
+
size 4600
|
LLM-Detector-V2-11w/checkpoint-5000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V2-11w/checkpoint-5000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V2-11w/checkpoint-5000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73cf151fd4a6873a2c4a037defe6bd2cb0cf499be5d89967c9f023286b4258a6
|
3 |
+
size 16800174
|
LLM-Detector-V2-11w/checkpoint-5000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a59bdfff13b7ea192b5b06e51c9a56fd45cb8aaa3b592a6ae50215c7c1d6b86
|
3 |
+
size 33608634
|
LLM-Detector-V2-11w/checkpoint-5000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V2-11w/checkpoint-5000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0873e58da7017c4ae0ea0a268eaa53956bc8ffd92e4697645c97f4f607410322
|
3 |
+
size 14244
|
LLM-Detector-V2-11w/checkpoint-5000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf48e457843d094d3761669f67579e960ebc0206509d4ada3fbacc891a92bf86
|
3 |
+
size 1064
|
LLM-Detector-V2-11w/checkpoint-5000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V2-11w/checkpoint-5000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V2-11w/checkpoint-5000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V2-11w/checkpoint-5000/trainer_state.json
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.3453518094981838,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 5000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.9990073706856164e-05,
|
14 |
+
"loss": 2.2244,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.99603027099283e-05,
|
20 |
+
"loss": 0.0286,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.991071065046783e-05,
|
26 |
+
"loss": 0.0144,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.984133690970033e-05,
|
32 |
+
"loss": 0.0223,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.975223657755279e-05,
|
38 |
+
"loss": 0.0179,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.9643480408906496e-05,
|
44 |
+
"loss": 0.0246,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.951515476741036e-05,
|
50 |
+
"loss": 0.0181,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.936736155689918e-05,
|
56 |
+
"loss": 0.0155,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.920021814047156e-05,
|
62 |
+
"loss": 0.0122,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.901385724729137e-05,
|
68 |
+
"loss": 0.0128,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 4.880842686718711e-05,
|
74 |
+
"loss": 0.016,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 4.858409013313266e-05,
|
80 |
+
"loss": 0.0134,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 4.8341025191702847e-05,
|
86 |
+
"loss": 0.0099,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 4.80794250616066e-05,
|
92 |
+
"loss": 0.0102,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 4.7799497480410125e-05,
|
98 |
+
"loss": 0.0109,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 4.7501464739571836e-05,
|
104 |
+
"loss": 0.0117,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 4.7185563507919895e-05,
|
110 |
+
"loss": 0.0154,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 4.685204464371269e-05,
|
116 |
+
"loss": 0.0107,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 4.6501172995431424e-05,
|
122 |
+
"loss": 0.0133,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 4.6133227191463044e-05,
|
128 |
+
"loss": 0.0157,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.57,
|
133 |
+
"learning_rate": 4.574849941884044e-05,
|
134 |
+
"loss": 0.0115,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.59,
|
139 |
+
"learning_rate": 4.534729519121574e-05,
|
140 |
+
"loss": 0.0135,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.62,
|
145 |
+
"learning_rate": 4.492993310625088e-05,
|
146 |
+
"loss": 0.0104,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.65,
|
151 |
+
"learning_rate": 4.449674459261804e-05,
|
152 |
+
"loss": 0.0113,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.67,
|
157 |
+
"learning_rate": 4.404807364681105e-05,
|
158 |
+
"loss": 0.0075,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.7,
|
163 |
+
"learning_rate": 4.358427655997657e-05,
|
164 |
+
"loss": 0.011,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.73,
|
169 |
+
"learning_rate": 4.310572163498205e-05,
|
170 |
+
"loss": 0.0103,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.75,
|
175 |
+
"learning_rate": 4.2612788893945176e-05,
|
176 |
+
"loss": 0.0126,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.78,
|
181 |
+
"learning_rate": 4.2105869776456944e-05,
|
182 |
+
"loss": 0.0084,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.81,
|
187 |
+
"learning_rate": 4.158536682873821e-05,
|
188 |
+
"loss": 0.0069,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.83,
|
193 |
+
"learning_rate": 4.1051693383976264e-05,
|
194 |
+
"loss": 0.0089,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.86,
|
199 |
+
"learning_rate": 4.050527323409557e-05,
|
200 |
+
"loss": 0.0103,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.89,
|
205 |
+
"learning_rate": 3.994654029322313e-05,
|
206 |
+
"loss": 0.011,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.91,
|
211 |
+
"learning_rate": 3.937593825311575e-05,
|
212 |
+
"loss": 0.0063,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.94,
|
217 |
+
"learning_rate": 3.8793920230822925e-05,
|
218 |
+
"loss": 0.0091,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.97,
|
223 |
+
"learning_rate": 3.8200948408864986e-05,
|
224 |
+
"loss": 0.0072,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.0,
|
229 |
+
"learning_rate": 3.759749366821241e-05,
|
230 |
+
"loss": 0.007,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.02,
|
235 |
+
"learning_rate": 3.698403521435756e-05,
|
236 |
+
"loss": 0.0067,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 1.05,
|
241 |
+
"learning_rate": 3.636106019677602e-05,
|
242 |
+
"loss": 0.0055,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 1.08,
|
247 |
+
"learning_rate": 3.572906332207943e-05,
|
248 |
+
"loss": 0.0071,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.1,
|
253 |
+
"learning_rate": 3.5088546461167346e-05,
|
254 |
+
"loss": 0.0056,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.13,
|
259 |
+
"learning_rate": 3.4440018250689767e-05,
|
260 |
+
"loss": 0.0074,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.16,
|
265 |
+
"learning_rate": 3.3783993689137015e-05,
|
266 |
+
"loss": 0.0061,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.18,
|
271 |
+
"learning_rate": 3.312099372787772e-05,
|
272 |
+
"loss": 0.0051,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 1.21,
|
277 |
+
"learning_rate": 3.2451544857469436e-05,
|
278 |
+
"loss": 0.0078,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.24,
|
283 |
+
"learning_rate": 3.177617868957078e-05,
|
284 |
+
"loss": 0.0064,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.26,
|
289 |
+
"learning_rate": 3.109543153478671e-05,
|
290 |
+
"loss": 0.0064,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.29,
|
295 |
+
"learning_rate": 3.040984397678245e-05,
|
296 |
+
"loss": 0.0064,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.32,
|
301 |
+
"learning_rate": 2.9719960443004107e-05,
|
302 |
+
"loss": 0.0062,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.35,
|
307 |
+
"learning_rate": 2.9026328772347e-05,
|
308 |
+
"loss": 0.0056,
|
309 |
+
"step": 5000
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"logging_steps": 100,
|
313 |
+
"max_steps": 11148,
|
314 |
+
"num_train_epochs": 3,
|
315 |
+
"save_steps": 5000,
|
316 |
+
"total_flos": 1.044197334217261e+18,
|
317 |
+
"trial_name": null,
|
318 |
+
"trial_params": null
|
319 |
+
}
|
LLM-Detector-V2-11w/checkpoint-5000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2501d0db9b5d010a4a25759f877d55c11a9cd335425e4c2cc6f2683c0ebb1612
|
3 |
+
size 4600
|
LLM-Detector-V2-11w/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V2-11w/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V2-11w/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V2-11w/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V2-11w/train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.02652581251227368,
|
4 |
+
"train_runtime": 75119.2077,
|
5 |
+
"train_samples_per_second": 4.749,
|
6 |
+
"train_steps_per_second": 0.148
|
7 |
+
}
|
LLM-Detector-V2-11w/trainer_log.jsonl
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 100, "total_steps": 11148, "loss": 2.2244, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9990073706856164e-05, "epoch": 0.03, "percentage": 0.9, "elapsed_time": "0:11:12", "remaining_time": "20:37:47"}
|
2 |
+
{"current_steps": 200, "total_steps": 11148, "loss": 0.0286, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99603027099283e-05, "epoch": 0.05, "percentage": 1.79, "elapsed_time": "0:22:37", "remaining_time": "20:38:29"}
|
3 |
+
{"current_steps": 300, "total_steps": 11148, "loss": 0.0144, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.991071065046783e-05, "epoch": 0.08, "percentage": 2.69, "elapsed_time": "0:33:36", "remaining_time": "20:15:19"}
|
4 |
+
{"current_steps": 400, "total_steps": 11148, "loss": 0.0223, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.984133690970033e-05, "epoch": 0.11, "percentage": 3.59, "elapsed_time": "0:44:40", "remaining_time": "20:00:36"}
|
5 |
+
{"current_steps": 500, "total_steps": 11148, "loss": 0.0179, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.975223657755279e-05, "epoch": 0.13, "percentage": 4.49, "elapsed_time": "0:56:02", "remaining_time": "19:53:35"}
|
6 |
+
{"current_steps": 600, "total_steps": 11148, "loss": 0.0246, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9643480408906496e-05, "epoch": 0.16, "percentage": 5.38, "elapsed_time": "1:07:23", "remaining_time": "19:44:49"}
|
7 |
+
{"current_steps": 700, "total_steps": 11148, "loss": 0.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.951515476741036e-05, "epoch": 0.19, "percentage": 6.28, "elapsed_time": "1:18:37", "remaining_time": "19:33:33"}
|
8 |
+
{"current_steps": 800, "total_steps": 11148, "loss": 0.0155, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.936736155689918e-05, "epoch": 0.22, "percentage": 7.18, "elapsed_time": "1:29:44", "remaining_time": "19:20:42"}
|
9 |
+
{"current_steps": 900, "total_steps": 11148, "loss": 0.0122, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.920021814047156e-05, "epoch": 0.24, "percentage": 8.07, "elapsed_time": "1:41:04", "remaining_time": "19:10:52"}
|
10 |
+
{"current_steps": 1000, "total_steps": 11148, "loss": 0.0128, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.901385724729137e-05, "epoch": 0.27, "percentage": 8.97, "elapsed_time": "1:52:26", "remaining_time": "19:01:04"}
|
11 |
+
{"current_steps": 1100, "total_steps": 11148, "loss": 0.016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.880842686718711e-05, "epoch": 0.3, "percentage": 9.87, "elapsed_time": "2:03:33", "remaining_time": "18:48:42"}
|
12 |
+
{"current_steps": 1200, "total_steps": 11148, "loss": 0.0134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.858409013313266e-05, "epoch": 0.32, "percentage": 10.76, "elapsed_time": "2:15:16", "remaining_time": "18:41:23"}
|
13 |
+
{"current_steps": 1300, "total_steps": 11148, "loss": 0.0099, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8341025191702847e-05, "epoch": 0.35, "percentage": 11.66, "elapsed_time": "2:26:27", "remaining_time": "18:29:25"}
|
14 |
+
{"current_steps": 1400, "total_steps": 11148, "loss": 0.0102, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.80794250616066e-05, "epoch": 0.38, "percentage": 12.56, "elapsed_time": "2:37:43", "remaining_time": "18:18:11"}
|
15 |
+
{"current_steps": 1500, "total_steps": 11148, "loss": 0.0109, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7799497480410125e-05, "epoch": 0.4, "percentage": 13.46, "elapsed_time": "2:48:51", "remaining_time": "18:06:03"}
|
16 |
+
{"current_steps": 1600, "total_steps": 11148, "loss": 0.0117, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7501464739571836e-05, "epoch": 0.43, "percentage": 14.35, "elapsed_time": "3:00:10", "remaining_time": "17:55:10"}
|
17 |
+
{"current_steps": 1700, "total_steps": 11148, "loss": 0.0154, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7185563507919895e-05, "epoch": 0.46, "percentage": 15.25, "elapsed_time": "3:11:16", "remaining_time": "17:43:00"}
|
18 |
+
{"current_steps": 1800, "total_steps": 11148, "loss": 0.0107, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.685204464371269e-05, "epoch": 0.48, "percentage": 16.15, "elapsed_time": "3:22:35", "remaining_time": "17:32:08"}
|
19 |
+
{"current_steps": 1900, "total_steps": 11148, "loss": 0.0133, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6501172995431424e-05, "epoch": 0.51, "percentage": 17.04, "elapsed_time": "3:33:46", "remaining_time": "17:20:28"}
|
20 |
+
{"current_steps": 2000, "total_steps": 11148, "loss": 0.0157, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6133227191463044e-05, "epoch": 0.54, "percentage": 17.94, "elapsed_time": "3:45:13", "remaining_time": "17:10:12"}
|
21 |
+
{"current_steps": 2100, "total_steps": 11148, "loss": 0.0115, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.574849941884044e-05, "epoch": 0.57, "percentage": 18.84, "elapsed_time": "3:56:12", "remaining_time": "16:57:42"}
|
22 |
+
{"current_steps": 2200, "total_steps": 11148, "loss": 0.0135, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.534729519121574e-05, "epoch": 0.59, "percentage": 19.73, "elapsed_time": "4:07:35", "remaining_time": "16:47:00"}
|
23 |
+
{"current_steps": 2300, "total_steps": 11148, "loss": 0.0104, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.492993310625088e-05, "epoch": 0.62, "percentage": 20.63, "elapsed_time": "4:18:55", "remaining_time": "16:36:05"}
|
24 |
+
{"current_steps": 2400, "total_steps": 11148, "loss": 0.0113, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.449674459261804e-05, "epoch": 0.65, "percentage": 21.53, "elapsed_time": "4:30:14", "remaining_time": "16:25:00"}
|
25 |
+
{"current_steps": 2500, "total_steps": 11148, "loss": 0.0075, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.404807364681105e-05, "epoch": 0.67, "percentage": 22.43, "elapsed_time": "4:41:29", "remaining_time": "16:13:45"}
|
26 |
+
{"current_steps": 2600, "total_steps": 11148, "loss": 0.011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.358427655997657e-05, "epoch": 0.7, "percentage": 23.32, "elapsed_time": "4:52:40", "remaining_time": "16:02:13"}
|
27 |
+
{"current_steps": 2700, "total_steps": 11148, "loss": 0.0103, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.310572163498205e-05, "epoch": 0.73, "percentage": 24.22, "elapsed_time": "5:04:00", "remaining_time": "15:51:11"}
|
28 |
+
{"current_steps": 2800, "total_steps": 11148, "loss": 0.0126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2612788893945176e-05, "epoch": 0.75, "percentage": 25.12, "elapsed_time": "5:15:26", "remaining_time": "15:40:28"}
|
29 |
+
{"current_steps": 2900, "total_steps": 11148, "loss": 0.0084, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2105869776456944e-05, "epoch": 0.78, "percentage": 26.01, "elapsed_time": "5:26:33", "remaining_time": "15:28:47"}
|
30 |
+
{"current_steps": 3000, "total_steps": 11148, "loss": 0.0069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.158536682873821e-05, "epoch": 0.81, "percentage": 26.91, "elapsed_time": "5:37:50", "remaining_time": "15:17:34"}
|
31 |
+
{"current_steps": 3100, "total_steps": 11148, "loss": 0.0089, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1051693383976264e-05, "epoch": 0.83, "percentage": 27.81, "elapsed_time": "5:49:28", "remaining_time": "15:07:17"}
|
32 |
+
{"current_steps": 3200, "total_steps": 11148, "loss": 0.0103, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.050527323409557e-05, "epoch": 0.86, "percentage": 28.7, "elapsed_time": "6:00:48", "remaining_time": "14:56:08"}
|
33 |
+
{"current_steps": 3300, "total_steps": 11148, "loss": 0.011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.994654029322313e-05, "epoch": 0.89, "percentage": 29.6, "elapsed_time": "6:12:20", "remaining_time": "14:45:29"}
|
34 |
+
{"current_steps": 3400, "total_steps": 11148, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.937593825311575e-05, "epoch": 0.91, "percentage": 30.5, "elapsed_time": "6:23:47", "remaining_time": "14:34:36"}
|
35 |
+
{"current_steps": 3500, "total_steps": 11148, "loss": 0.0091, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8793920230822925e-05, "epoch": 0.94, "percentage": 31.4, "elapsed_time": "6:34:46", "remaining_time": "14:22:39"}
|
36 |
+
{"current_steps": 3600, "total_steps": 11148, "loss": 0.0072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8200948408864986e-05, "epoch": 0.97, "percentage": 32.29, "elapsed_time": "6:46:02", "remaining_time": "14:11:19"}
|
37 |
+
{"current_steps": 3700, "total_steps": 11148, "loss": 0.007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.759749366821241e-05, "epoch": 1.0, "percentage": 33.19, "elapsed_time": "6:57:15", "remaining_time": "13:59:55"}
|
38 |
+
{"current_steps": 3800, "total_steps": 11148, "loss": 0.0067, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.698403521435756e-05, "epoch": 1.02, "percentage": 34.09, "elapsed_time": "7:08:23", "remaining_time": "13:48:22"}
|
39 |
+
{"current_steps": 3900, "total_steps": 11148, "loss": 0.0055, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.636106019677602e-05, "epoch": 1.05, "percentage": 34.98, "elapsed_time": "7:19:37", "remaining_time": "13:37:01"}
|
40 |
+
{"current_steps": 4000, "total_steps": 11148, "loss": 0.0071, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.572906332207943e-05, "epoch": 1.08, "percentage": 35.88, "elapsed_time": "7:30:50", "remaining_time": "13:25:39"}
|
41 |
+
{"current_steps": 4100, "total_steps": 11148, "loss": 0.0056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5088546461167346e-05, "epoch": 1.1, "percentage": 36.78, "elapsed_time": "7:42:28", "remaining_time": "13:15:01"}
|
42 |
+
{"current_steps": 4200, "total_steps": 11148, "loss": 0.0074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4440018250689767e-05, "epoch": 1.13, "percentage": 37.67, "elapsed_time": "7:53:22", "remaining_time": "13:03:06"}
|
43 |
+
{"current_steps": 4300, "total_steps": 11148, "loss": 0.0061, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3783993689137015e-05, "epoch": 1.16, "percentage": 38.57, "elapsed_time": "8:04:39", "remaining_time": "12:51:51"}
|
44 |
+
{"current_steps": 4400, "total_steps": 11148, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.312099372787772e-05, "epoch": 1.18, "percentage": 39.47, "elapsed_time": "8:15:38", "remaining_time": "12:40:08"}
|
45 |
+
{"current_steps": 4500, "total_steps": 11148, "loss": 0.0078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2451544857469436e-05, "epoch": 1.21, "percentage": 40.37, "elapsed_time": "8:27:19", "remaining_time": "12:29:28"}
|
46 |
+
{"current_steps": 4600, "total_steps": 11148, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.177617868957078e-05, "epoch": 1.24, "percentage": 41.26, "elapsed_time": "8:38:24", "remaining_time": "12:17:56"}
|
47 |
+
{"current_steps": 4700, "total_steps": 11148, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.109543153478671e-05, "epoch": 1.26, "percentage": 42.16, "elapsed_time": "8:49:17", "remaining_time": "12:06:08"}
|
48 |
+
{"current_steps": 4800, "total_steps": 11148, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.040984397678245e-05, "epoch": 1.29, "percentage": 43.06, "elapsed_time": "9:00:24", "remaining_time": "11:54:41"}
|
49 |
+
{"current_steps": 4900, "total_steps": 11148, "loss": 0.0062, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9719960443004107e-05, "epoch": 1.32, "percentage": 43.95, "elapsed_time": "9:11:44", "remaining_time": "11:43:31"}
|
50 |
+
{"current_steps": 5000, "total_steps": 11148, "loss": 0.0056, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9026328772347e-05, "epoch": 1.35, "percentage": 44.85, "elapsed_time": "9:22:47", "remaining_time": "11:32:01"}
|
51 |
+
{"current_steps": 5100, "total_steps": 11148, "loss": 0.0096, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8329499780114865e-05, "epoch": 1.37, "percentage": 45.75, "elapsed_time": "9:33:55", "remaining_time": "11:20:36"}
|
52 |
+
{"current_steps": 5200, "total_steps": 11148, "loss": 0.0054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.763002682061555e-05, "epoch": 1.4, "percentage": 46.65, "elapsed_time": "9:44:58", "remaining_time": "11:09:07"}
|
53 |
+
{"current_steps": 5300, "total_steps": 11148, "loss": 0.0049, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6928465347740434e-05, "epoch": 1.43, "percentage": 47.54, "elapsed_time": "9:56:00", "remaining_time": "10:57:37"}
|
54 |
+
{"current_steps": 5400, "total_steps": 11148, "loss": 0.0023, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6225372473876565e-05, "epoch": 1.45, "percentage": 48.44, "elapsed_time": "10:07:17", "remaining_time": "10:46:25"}
|
55 |
+
{"current_steps": 5500, "total_steps": 11148, "loss": 0.0065, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.552835016828629e-05, "epoch": 1.48, "percentage": 49.34, "elapsed_time": "10:18:24", "remaining_time": "10:35:03"}
|
56 |
+
{"current_steps": 5600, "total_steps": 11148, "loss": 0.0032, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4823871621313255e-05, "epoch": 1.51, "percentage": 50.23, "elapsed_time": "10:29:47", "remaining_time": "10:23:56"}
|
57 |
+
{"current_steps": 5700, "total_steps": 11148, "loss": 0.0043, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.411953293849365e-05, "epoch": 1.53, "percentage": 51.13, "elapsed_time": "10:40:54", "remaining_time": "10:12:34"}
|
58 |
+
{"current_steps": 5800, "total_steps": 11148, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.341589343760652e-05, "epoch": 1.56, "percentage": 52.03, "elapsed_time": "10:51:35", "remaining_time": "10:00:48"}
|
59 |
+
{"current_steps": 5900, "total_steps": 11148, "loss": 0.0048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.271351188120813e-05, "epoch": 1.59, "percentage": 52.92, "elapsed_time": "11:03:01", "remaining_time": "9:49:45"}
|
60 |
+
{"current_steps": 6000, "total_steps": 11148, "loss": 0.0082, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2012946032916717e-05, "epoch": 1.61, "percentage": 53.82, "elapsed_time": "11:14:20", "remaining_time": "9:38:34"}
|
61 |
+
{"current_steps": 6100, "total_steps": 11148, "loss": 0.0046, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1314752214490396e-05, "epoch": 1.64, "percentage": 54.72, "elapsed_time": "11:25:45", "remaining_time": "9:27:29"}
|
62 |
+
{"current_steps": 6200, "total_steps": 11148, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.061948486405021e-05, "epoch": 1.67, "percentage": 55.62, "elapsed_time": "11:36:47", "remaining_time": "9:16:05"}
|
63 |
+
{"current_steps": 6300, "total_steps": 11148, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.992769609579885e-05, "epoch": 1.7, "percentage": 56.51, "elapsed_time": "11:47:49", "remaining_time": "9:04:41"}
|
64 |
+
{"current_steps": 6400, "total_steps": 11148, "loss": 0.0041, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9239935261584917e-05, "epoch": 1.72, "percentage": 57.41, "elapsed_time": "11:59:07", "remaining_time": "8:53:29"}
|
65 |
+
{"current_steps": 6500, "total_steps": 11148, "loss": 0.004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8556748514660664e-05, "epoch": 1.75, "percentage": 58.31, "elapsed_time": "12:10:29", "remaining_time": "8:42:21"}
|
66 |
+
{"current_steps": 6600, "total_steps": 11148, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7878678375979845e-05, "epoch": 1.78, "percentage": 59.2, "elapsed_time": "12:22:04", "remaining_time": "8:31:21"}
|
67 |
+
{"current_steps": 6700, "total_steps": 11148, "loss": 0.0066, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7206263303379948e-05, "epoch": 1.8, "percentage": 60.1, "elapsed_time": "12:33:49", "remaining_time": "8:20:27"}
|
68 |
+
{"current_steps": 6800, "total_steps": 11148, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.654003726399097e-05, "epoch": 1.83, "percentage": 61.0, "elapsed_time": "12:44:59", "remaining_time": "8:09:08"}
|
69 |
+
{"current_steps": 6900, "total_steps": 11148, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5880529310210283e-05, "epoch": 1.86, "percentage": 61.89, "elapsed_time": "12:56:13", "remaining_time": "7:57:53"}
|
70 |
+
{"current_steps": 7000, "total_steps": 11148, "loss": 0.0033, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5228263159580275e-05, "epoch": 1.88, "percentage": 62.79, "elapsed_time": "13:07:30", "remaining_time": "7:46:39"}
|
71 |
+
{"current_steps": 7100, "total_steps": 11148, "loss": 0.0059, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4583756778902463e-05, "epoch": 1.91, "percentage": 63.69, "elapsed_time": "13:18:37", "remaining_time": "7:35:19"}
|
72 |
+
{"current_steps": 7200, "total_steps": 11148, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3947521972918251e-05, "epoch": 1.94, "percentage": 64.59, "elapsed_time": "13:29:49", "remaining_time": "7:24:03"}
|
73 |
+
{"current_steps": 7300, "total_steps": 11148, "loss": 0.0041, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3320063977883046e-05, "epoch": 1.96, "percentage": 65.48, "elapsed_time": "13:41:06", "remaining_time": "7:12:49"}
|
74 |
+
{"current_steps": 7400, "total_steps": 11148, "loss": 0.0049, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2701881060356396e-05, "epoch": 1.99, "percentage": 66.38, "elapsed_time": "13:52:06", "remaining_time": "7:01:27"}
|
75 |
+
{"current_steps": 7500, "total_steps": 11148, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.209346412152676e-05, "epoch": 2.02, "percentage": 67.28, "elapsed_time": "14:03:11", "remaining_time": "6:50:07"}
|
76 |
+
{"current_steps": 7600, "total_steps": 11148, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.149529630738521e-05, "epoch": 2.04, "percentage": 68.17, "elapsed_time": "14:14:31", "remaining_time": "6:38:55"}
|
77 |
+
{"current_steps": 7700, "total_steps": 11148, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0907852625057538e-05, "epoch": 2.07, "percentage": 69.07, "elapsed_time": "14:25:35", "remaining_time": "6:27:36"}
|
78 |
+
{"current_steps": 7800, "total_steps": 11148, "loss": 0.0014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0331599565599464e-05, "epoch": 2.1, "percentage": 69.97, "elapsed_time": "14:36:28", "remaining_time": "6:16:12"}
|
79 |
+
{"current_steps": 7900, "total_steps": 11148, "loss": 0.004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.766994733554432e-06, "epoch": 2.13, "percentage": 70.86, "elapsed_time": "14:47:19", "remaining_time": "6:04:48"}
|
80 |
+
{"current_steps": 8000, "total_steps": 11148, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.214486483568307e-06, "epoch": 2.15, "percentage": 71.76, "elapsed_time": "14:58:44", "remaining_time": "5:53:39"}
|
81 |
+
{"current_steps": 8100, "total_steps": 11148, "loss": 0.0025, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.674513564349376e-06, "epoch": 2.18, "percentage": 72.66, "elapsed_time": "15:09:39", "remaining_time": "5:42:17"}
|
82 |
+
{"current_steps": 8200, "total_steps": 11148, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.147504770256536e-06, "epoch": 2.21, "percentage": 73.56, "elapsed_time": "15:20:57", "remaining_time": "5:31:05"}
|
83 |
+
{"current_steps": 8300, "total_steps": 11148, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.633878600792143e-06, "epoch": 2.23, "percentage": 74.45, "elapsed_time": "15:32:04", "remaining_time": "5:19:49"}
|
84 |
+
{"current_steps": 8400, "total_steps": 11148, "loss": 0.0016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.138971709507527e-06, "epoch": 2.26, "percentage": 75.35, "elapsed_time": "15:43:11", "remaining_time": "5:08:33"}
|
85 |
+
{"current_steps": 8500, "total_steps": 11148, "loss": 0.003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.653179652954706e-06, "epoch": 2.29, "percentage": 76.25, "elapsed_time": "15:54:31", "remaining_time": "4:57:21"}
|
86 |
+
{"current_steps": 8600, "total_steps": 11148, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.181956869763645e-06, "epoch": 2.31, "percentage": 77.14, "elapsed_time": "16:05:52", "remaining_time": "4:46:10"}
|
87 |
+
{"current_steps": 8700, "total_steps": 11148, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.725677559572909e-06, "epoch": 2.34, "percentage": 78.04, "elapsed_time": "16:17:01", "remaining_time": "4:34:54"}
|
88 |
+
{"current_steps": 8800, "total_steps": 11148, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.284704055357578e-06, "epoch": 2.37, "percentage": 78.94, "elapsed_time": "16:28:18", "remaining_time": "4:23:41"}
|
89 |
+
{"current_steps": 8900, "total_steps": 11148, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.859386535699373e-06, "epoch": 2.39, "percentage": 79.83, "elapsed_time": "16:39:37", "remaining_time": "4:12:29"}
|
90 |
+
{"current_steps": 9000, "total_steps": 11148, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4500627467086245e-06, "epoch": 2.42, "percentage": 80.73, "elapsed_time": "16:51:12", "remaining_time": "4:01:20"}
|
91 |
+
{"current_steps": 9100, "total_steps": 11148, "loss": 0.0016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.057057733818967e-06, "epoch": 2.45, "percentage": 81.63, "elapsed_time": "17:02:20", "remaining_time": "3:50:04"}
|
92 |
+
{"current_steps": 9200, "total_steps": 11148, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.680683583667599e-06, "epoch": 2.48, "percentage": 82.53, "elapsed_time": "17:13:20", "remaining_time": "3:38:47"}
|
93 |
+
{"current_steps": 9300, "total_steps": 11148, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.321239176266211e-06, "epoch": 2.5, "percentage": 83.42, "elapsed_time": "17:24:23", "remaining_time": "3:27:31"}
|
94 |
+
{"current_steps": 9400, "total_steps": 11148, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9790099476593393e-06, "epoch": 2.53, "percentage": 84.32, "elapsed_time": "17:35:33", "remaining_time": "3:16:17"}
|
95 |
+
{"current_steps": 9500, "total_steps": 11148, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.654267663258628e-06, "epoch": 2.56, "percentage": 85.22, "elapsed_time": "17:47:00", "remaining_time": "3:05:05"}
|
96 |
+
{"current_steps": 9600, "total_steps": 11148, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3472702020329696e-06, "epoch": 2.58, "percentage": 86.11, "elapsed_time": "17:58:19", "remaining_time": "2:53:52"}
|
97 |
+
{"current_steps": 9700, "total_steps": 11148, "loss": 0.0014, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0582613517259377e-06, "epoch": 2.61, "percentage": 87.01, "elapsed_time": "18:09:34", "remaining_time": "2:42:39"}
|
98 |
+
{"current_steps": 9800, "total_steps": 11148, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7874706152630705e-06, "epoch": 2.64, "percentage": 87.91, "elapsed_time": "18:20:45", "remaining_time": "2:31:24"}
|
99 |
+
{"current_steps": 9900, "total_steps": 11148, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5351130285028214e-06, "epoch": 2.66, "percentage": 88.81, "elapsed_time": "18:31:59", "remaining_time": "2:20:10"}
|
100 |
+
{"current_steps": 10000, "total_steps": 11148, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3036333720407912e-06, "epoch": 2.69, "percentage": 89.7, "elapsed_time": "18:42:49", "remaining_time": "2:08:54"}
|
101 |
+
{"current_steps": 10100, "total_steps": 11148, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0885394205533805e-06, "epoch": 2.72, "percentage": 90.6, "elapsed_time": "18:54:12", "remaining_time": "1:57:41"}
|
102 |
+
{"current_steps": 10200, "total_steps": 11148, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.924336424426832e-07, "epoch": 2.74, "percentage": 91.5, "elapsed_time": "19:05:08", "remaining_time": "1:46:25"}
|
103 |
+
{"current_steps": 10300, "total_steps": 11148, "loss": 0.0022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.154717659839549e-07, "epoch": 2.77, "percentage": 92.39, "elapsed_time": "19:16:30", "remaining_time": "1:35:12"}
|
104 |
+
{"current_steps": 10400, "total_steps": 11148, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.57794317214072e-07, "epoch": 2.8, "percentage": 93.29, "elapsed_time": "19:27:31", "remaining_time": "1:23:58"}
|
105 |
+
{"current_steps": 10500, "total_steps": 11148, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1952650833933515e-07, "epoch": 2.83, "percentage": 94.19, "elapsed_time": "19:38:44", "remaining_time": "1:12:44"}
|
106 |
+
{"current_steps": 10600, "total_steps": 11148, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.007781383039976e-07, "epoch": 2.85, "percentage": 95.08, "elapsed_time": "19:50:06", "remaining_time": "1:01:31"}
|
107 |
+
{"current_steps": 10700, "total_steps": 11148, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0164350559856714e-07, "epoch": 2.88, "percentage": 95.98, "elapsed_time": "20:01:33", "remaining_time": "0:50:18"}
|
108 |
+
{"current_steps": 10800, "total_steps": 11148, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.222013333770422e-07, "epoch": 2.91, "percentage": 96.88, "elapsed_time": "20:12:33", "remaining_time": "0:39:04"}
|
109 |
+
{"current_steps": 10900, "total_steps": 11148, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.251470694257356e-08, "epoch": 2.93, "percentage": 97.78, "elapsed_time": "20:24:02", "remaining_time": "0:27:50"}
|
110 |
+
{"current_steps": 11000, "total_steps": 11148, "loss": 0.003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2631023651226157e-08, "epoch": 2.96, "percentage": 98.67, "elapsed_time": "20:35:15", "remaining_time": "0:16:37"}
|
111 |
+
{"current_steps": 11100, "total_steps": 11148, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.581955273558978e-09, "epoch": 2.99, "percentage": 99.57, "elapsed_time": "20:46:31", "remaining_time": "0:05:23"}
|
112 |
+
{"current_steps": 11148, "total_steps": 11148, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "20:51:59", "remaining_time": "0:00:00"}
|
LLM-Detector-V2-11w/trainer_state.json
ADDED
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9995963944571504,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 11148,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.9990073706856164e-05,
|
14 |
+
"loss": 2.2244,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.99603027099283e-05,
|
20 |
+
"loss": 0.0286,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.991071065046783e-05,
|
26 |
+
"loss": 0.0144,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.984133690970033e-05,
|
32 |
+
"loss": 0.0223,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.975223657755279e-05,
|
38 |
+
"loss": 0.0179,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.9643480408906496e-05,
|
44 |
+
"loss": 0.0246,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.951515476741036e-05,
|
50 |
+
"loss": 0.0181,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.936736155689918e-05,
|
56 |
+
"loss": 0.0155,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.920021814047156e-05,
|
62 |
+
"loss": 0.0122,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.901385724729137e-05,
|
68 |
+
"loss": 0.0128,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 4.880842686718711e-05,
|
74 |
+
"loss": 0.016,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 4.858409013313266e-05,
|
80 |
+
"loss": 0.0134,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 4.8341025191702847e-05,
|
86 |
+
"loss": 0.0099,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 4.80794250616066e-05,
|
92 |
+
"loss": 0.0102,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 4.7799497480410125e-05,
|
98 |
+
"loss": 0.0109,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 4.7501464739571836e-05,
|
104 |
+
"loss": 0.0117,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 4.7185563507919895e-05,
|
110 |
+
"loss": 0.0154,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 4.685204464371269e-05,
|
116 |
+
"loss": 0.0107,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 4.6501172995431424e-05,
|
122 |
+
"loss": 0.0133,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 4.6133227191463044e-05,
|
128 |
+
"loss": 0.0157,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.57,
|
133 |
+
"learning_rate": 4.574849941884044e-05,
|
134 |
+
"loss": 0.0115,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.59,
|
139 |
+
"learning_rate": 4.534729519121574e-05,
|
140 |
+
"loss": 0.0135,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.62,
|
145 |
+
"learning_rate": 4.492993310625088e-05,
|
146 |
+
"loss": 0.0104,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.65,
|
151 |
+
"learning_rate": 4.449674459261804e-05,
|
152 |
+
"loss": 0.0113,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.67,
|
157 |
+
"learning_rate": 4.404807364681105e-05,
|
158 |
+
"loss": 0.0075,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.7,
|
163 |
+
"learning_rate": 4.358427655997657e-05,
|
164 |
+
"loss": 0.011,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.73,
|
169 |
+
"learning_rate": 4.310572163498205e-05,
|
170 |
+
"loss": 0.0103,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.75,
|
175 |
+
"learning_rate": 4.2612788893945176e-05,
|
176 |
+
"loss": 0.0126,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.78,
|
181 |
+
"learning_rate": 4.2105869776456944e-05,
|
182 |
+
"loss": 0.0084,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.81,
|
187 |
+
"learning_rate": 4.158536682873821e-05,
|
188 |
+
"loss": 0.0069,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.83,
|
193 |
+
"learning_rate": 4.1051693383976264e-05,
|
194 |
+
"loss": 0.0089,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.86,
|
199 |
+
"learning_rate": 4.050527323409557e-05,
|
200 |
+
"loss": 0.0103,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.89,
|
205 |
+
"learning_rate": 3.994654029322313e-05,
|
206 |
+
"loss": 0.011,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.91,
|
211 |
+
"learning_rate": 3.937593825311575e-05,
|
212 |
+
"loss": 0.0063,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.94,
|
217 |
+
"learning_rate": 3.8793920230822925e-05,
|
218 |
+
"loss": 0.0091,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.97,
|
223 |
+
"learning_rate": 3.8200948408864986e-05,
|
224 |
+
"loss": 0.0072,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.0,
|
229 |
+
"learning_rate": 3.759749366821241e-05,
|
230 |
+
"loss": 0.007,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.02,
|
235 |
+
"learning_rate": 3.698403521435756e-05,
|
236 |
+
"loss": 0.0067,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 1.05,
|
241 |
+
"learning_rate": 3.636106019677602e-05,
|
242 |
+
"loss": 0.0055,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 1.08,
|
247 |
+
"learning_rate": 3.572906332207943e-05,
|
248 |
+
"loss": 0.0071,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.1,
|
253 |
+
"learning_rate": 3.5088546461167346e-05,
|
254 |
+
"loss": 0.0056,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.13,
|
259 |
+
"learning_rate": 3.4440018250689767e-05,
|
260 |
+
"loss": 0.0074,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.16,
|
265 |
+
"learning_rate": 3.3783993689137015e-05,
|
266 |
+
"loss": 0.0061,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.18,
|
271 |
+
"learning_rate": 3.312099372787772e-05,
|
272 |
+
"loss": 0.0051,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 1.21,
|
277 |
+
"learning_rate": 3.2451544857469436e-05,
|
278 |
+
"loss": 0.0078,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.24,
|
283 |
+
"learning_rate": 3.177617868957078e-05,
|
284 |
+
"loss": 0.0064,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.26,
|
289 |
+
"learning_rate": 3.109543153478671e-05,
|
290 |
+
"loss": 0.0064,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.29,
|
295 |
+
"learning_rate": 3.040984397678245e-05,
|
296 |
+
"loss": 0.0064,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.32,
|
301 |
+
"learning_rate": 2.9719960443004107e-05,
|
302 |
+
"loss": 0.0062,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.35,
|
307 |
+
"learning_rate": 2.9026328772347e-05,
|
308 |
+
"loss": 0.0056,
|
309 |
+
"step": 5000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 1.37,
|
313 |
+
"learning_rate": 2.8329499780114865e-05,
|
314 |
+
"loss": 0.0096,
|
315 |
+
"step": 5100
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 1.4,
|
319 |
+
"learning_rate": 2.763002682061555e-05,
|
320 |
+
"loss": 0.0054,
|
321 |
+
"step": 5200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 1.43,
|
325 |
+
"learning_rate": 2.6928465347740434e-05,
|
326 |
+
"loss": 0.0049,
|
327 |
+
"step": 5300
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 1.45,
|
331 |
+
"learning_rate": 2.6225372473876565e-05,
|
332 |
+
"loss": 0.0023,
|
333 |
+
"step": 5400
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.48,
|
337 |
+
"learning_rate": 2.552835016828629e-05,
|
338 |
+
"loss": 0.0065,
|
339 |
+
"step": 5500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.51,
|
343 |
+
"learning_rate": 2.4823871621313255e-05,
|
344 |
+
"loss": 0.0032,
|
345 |
+
"step": 5600
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.53,
|
349 |
+
"learning_rate": 2.411953293849365e-05,
|
350 |
+
"loss": 0.0043,
|
351 |
+
"step": 5700
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 1.56,
|
355 |
+
"learning_rate": 2.341589343760652e-05,
|
356 |
+
"loss": 0.0038,
|
357 |
+
"step": 5800
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 1.59,
|
361 |
+
"learning_rate": 2.271351188120813e-05,
|
362 |
+
"loss": 0.0048,
|
363 |
+
"step": 5900
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 1.61,
|
367 |
+
"learning_rate": 2.2012946032916717e-05,
|
368 |
+
"loss": 0.0082,
|
369 |
+
"step": 6000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.64,
|
373 |
+
"learning_rate": 2.1314752214490396e-05,
|
374 |
+
"loss": 0.0046,
|
375 |
+
"step": 6100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.67,
|
379 |
+
"learning_rate": 2.061948486405021e-05,
|
380 |
+
"loss": 0.0063,
|
381 |
+
"step": 6200
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.7,
|
385 |
+
"learning_rate": 1.992769609579885e-05,
|
386 |
+
"loss": 0.0052,
|
387 |
+
"step": 6300
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.72,
|
391 |
+
"learning_rate": 1.9239935261584917e-05,
|
392 |
+
"loss": 0.0041,
|
393 |
+
"step": 6400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 1.75,
|
397 |
+
"learning_rate": 1.8556748514660664e-05,
|
398 |
+
"loss": 0.004,
|
399 |
+
"step": 6500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.78,
|
403 |
+
"learning_rate": 1.7878678375979845e-05,
|
404 |
+
"loss": 0.0035,
|
405 |
+
"step": 6600
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.8,
|
409 |
+
"learning_rate": 1.7206263303379948e-05,
|
410 |
+
"loss": 0.0066,
|
411 |
+
"step": 6700
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 1.83,
|
415 |
+
"learning_rate": 1.654003726399097e-05,
|
416 |
+
"loss": 0.0047,
|
417 |
+
"step": 6800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.86,
|
421 |
+
"learning_rate": 1.5880529310210283e-05,
|
422 |
+
"loss": 0.005,
|
423 |
+
"step": 6900
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.88,
|
427 |
+
"learning_rate": 1.5228263159580275e-05,
|
428 |
+
"loss": 0.0033,
|
429 |
+
"step": 7000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.91,
|
433 |
+
"learning_rate": 1.4583756778902463e-05,
|
434 |
+
"loss": 0.0059,
|
435 |
+
"step": 7100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 1.94,
|
439 |
+
"learning_rate": 1.3947521972918251e-05,
|
440 |
+
"loss": 0.0051,
|
441 |
+
"step": 7200
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 1.96,
|
445 |
+
"learning_rate": 1.3320063977883046e-05,
|
446 |
+
"loss": 0.0041,
|
447 |
+
"step": 7300
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.99,
|
451 |
+
"learning_rate": 1.2701881060356396e-05,
|
452 |
+
"loss": 0.0049,
|
453 |
+
"step": 7400
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.02,
|
457 |
+
"learning_rate": 1.209346412152676e-05,
|
458 |
+
"loss": 0.0024,
|
459 |
+
"step": 7500
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 2.04,
|
463 |
+
"learning_rate": 1.149529630738521e-05,
|
464 |
+
"loss": 0.0035,
|
465 |
+
"step": 7600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 2.07,
|
469 |
+
"learning_rate": 1.0907852625057538e-05,
|
470 |
+
"loss": 0.0013,
|
471 |
+
"step": 7700
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 2.1,
|
475 |
+
"learning_rate": 1.0331599565599464e-05,
|
476 |
+
"loss": 0.0014,
|
477 |
+
"step": 7800
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 2.13,
|
481 |
+
"learning_rate": 9.766994733554432e-06,
|
482 |
+
"loss": 0.004,
|
483 |
+
"step": 7900
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 2.15,
|
487 |
+
"learning_rate": 9.214486483568307e-06,
|
488 |
+
"loss": 0.0021,
|
489 |
+
"step": 8000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 2.18,
|
493 |
+
"learning_rate": 8.674513564349376e-06,
|
494 |
+
"loss": 0.0025,
|
495 |
+
"step": 8100
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 2.21,
|
499 |
+
"learning_rate": 8.147504770256536e-06,
|
500 |
+
"loss": 0.0026,
|
501 |
+
"step": 8200
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 2.23,
|
505 |
+
"learning_rate": 7.633878600792143e-06,
|
506 |
+
"loss": 0.0018,
|
507 |
+
"step": 8300
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 2.26,
|
511 |
+
"learning_rate": 7.138971709507527e-06,
|
512 |
+
"loss": 0.0016,
|
513 |
+
"step": 8400
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 2.29,
|
517 |
+
"learning_rate": 6.653179652954706e-06,
|
518 |
+
"loss": 0.003,
|
519 |
+
"step": 8500
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 2.31,
|
523 |
+
"learning_rate": 6.181956869763645e-06,
|
524 |
+
"loss": 0.0011,
|
525 |
+
"step": 8600
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 2.34,
|
529 |
+
"learning_rate": 5.725677559572909e-06,
|
530 |
+
"loss": 0.0024,
|
531 |
+
"step": 8700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 2.37,
|
535 |
+
"learning_rate": 5.284704055357578e-06,
|
536 |
+
"loss": 0.0007,
|
537 |
+
"step": 8800
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 2.39,
|
541 |
+
"learning_rate": 4.859386535699373e-06,
|
542 |
+
"loss": 0.0017,
|
543 |
+
"step": 8900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 2.42,
|
547 |
+
"learning_rate": 4.4500627467086245e-06,
|
548 |
+
"loss": 0.0021,
|
549 |
+
"step": 9000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 2.45,
|
553 |
+
"learning_rate": 4.057057733818967e-06,
|
554 |
+
"loss": 0.0016,
|
555 |
+
"step": 9100
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.48,
|
559 |
+
"learning_rate": 3.680683583667599e-06,
|
560 |
+
"loss": 0.0013,
|
561 |
+
"step": 9200
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 2.5,
|
565 |
+
"learning_rate": 3.321239176266211e-06,
|
566 |
+
"loss": 0.0028,
|
567 |
+
"step": 9300
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 2.53,
|
571 |
+
"learning_rate": 2.9790099476593393e-06,
|
572 |
+
"loss": 0.0007,
|
573 |
+
"step": 9400
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 2.56,
|
577 |
+
"learning_rate": 2.654267663258628e-06,
|
578 |
+
"loss": 0.0026,
|
579 |
+
"step": 9500
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 2.58,
|
583 |
+
"learning_rate": 2.3472702020329696e-06,
|
584 |
+
"loss": 0.0013,
|
585 |
+
"step": 9600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.61,
|
589 |
+
"learning_rate": 2.0582613517259377e-06,
|
590 |
+
"loss": 0.0014,
|
591 |
+
"step": 9700
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 2.64,
|
595 |
+
"learning_rate": 1.7874706152630705e-06,
|
596 |
+
"loss": 0.0011,
|
597 |
+
"step": 9800
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.66,
|
601 |
+
"learning_rate": 1.5351130285028214e-06,
|
602 |
+
"loss": 0.0022,
|
603 |
+
"step": 9900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 2.69,
|
607 |
+
"learning_rate": 1.3036333720407912e-06,
|
608 |
+
"loss": 0.0012,
|
609 |
+
"step": 10000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 2.72,
|
613 |
+
"learning_rate": 1.0885394205533805e-06,
|
614 |
+
"loss": 0.0018,
|
615 |
+
"step": 10100
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 2.74,
|
619 |
+
"learning_rate": 8.924336424426832e-07,
|
620 |
+
"loss": 0.0021,
|
621 |
+
"step": 10200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 2.77,
|
625 |
+
"learning_rate": 7.154717659839549e-07,
|
626 |
+
"loss": 0.0022,
|
627 |
+
"step": 10300
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 2.8,
|
631 |
+
"learning_rate": 5.57794317214072e-07,
|
632 |
+
"loss": 0.002,
|
633 |
+
"step": 10400
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 2.83,
|
637 |
+
"learning_rate": 4.1952650833933515e-07,
|
638 |
+
"loss": 0.0017,
|
639 |
+
"step": 10500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.85,
|
643 |
+
"learning_rate": 3.007781383039976e-07,
|
644 |
+
"loss": 0.0024,
|
645 |
+
"step": 10600
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 2.88,
|
649 |
+
"learning_rate": 2.0164350559856714e-07,
|
650 |
+
"loss": 0.0011,
|
651 |
+
"step": 10700
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 2.91,
|
655 |
+
"learning_rate": 1.222013333770422e-07,
|
656 |
+
"loss": 0.0013,
|
657 |
+
"step": 10800
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 2.93,
|
661 |
+
"learning_rate": 6.251470694257356e-08,
|
662 |
+
"loss": 0.0011,
|
663 |
+
"step": 10900
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 2.96,
|
667 |
+
"learning_rate": 2.2631023651226157e-08,
|
668 |
+
"loss": 0.003,
|
669 |
+
"step": 11000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 2.99,
|
673 |
+
"learning_rate": 2.581955273558978e-09,
|
674 |
+
"loss": 0.0026,
|
675 |
+
"step": 11100
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 3.0,
|
679 |
+
"step": 11148,
|
680 |
+
"total_flos": 2.3299941680566764e+18,
|
681 |
+
"train_loss": 0.02652581251227368,
|
682 |
+
"train_runtime": 75119.2077,
|
683 |
+
"train_samples_per_second": 4.749,
|
684 |
+
"train_steps_per_second": 0.148
|
685 |
+
}
|
686 |
+
],
|
687 |
+
"logging_steps": 100,
|
688 |
+
"max_steps": 11148,
|
689 |
+
"num_train_epochs": 3,
|
690 |
+
"save_steps": 5000,
|
691 |
+
"total_flos": 2.3299941680566764e+18,
|
692 |
+
"trial_name": null,
|
693 |
+
"trial_params": null
|
694 |
+
}
|
LLM-Detector-V2-11w/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2501d0db9b5d010a4a25759f877d55c11a9cd335425e4c2cc6f2683c0ebb1612
|
3 |
+
size 4600
|
LLM-Detector-V2-11w/training_loss.png
ADDED