wangrongsheng
commited on
Commit
·
43646eb
1
Parent(s):
53a86c0
add v1
Browse filesBaichuan2-7b-Chat version:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/tree/84603cde5ebffb6084e476cfaeceaf0b8b91fe54
This view is limited to 50 files because it contains too many changes.
See raw diff
- LLM-Detector-V1-4w/README.md +66 -0
- LLM-Detector-V1-4w/adapter_config.json +22 -0
- LLM-Detector-V1-4w/adapter_model.bin +3 -0
- LLM-Detector-V1-4w/all_results.json +11 -0
- LLM-Detector-V1-4w/checkpoint-1000/README.md +219 -0
- LLM-Detector-V1-4w/checkpoint-1000/adapter_config.json +22 -0
- LLM-Detector-V1-4w/checkpoint-1000/adapter_model.bin +3 -0
- LLM-Detector-V1-4w/checkpoint-1000/optimizer.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-1000/rng_state.pth +3 -0
- LLM-Detector-V1-4w/checkpoint-1000/scheduler.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-1000/special_tokens_map.json +30 -0
- LLM-Detector-V1-4w/checkpoint-1000/tokenization_baichuan.py +251 -0
- LLM-Detector-V1-4w/checkpoint-1000/tokenizer.model +3 -0
- LLM-Detector-V1-4w/checkpoint-1000/tokenizer_config.json +49 -0
- LLM-Detector-V1-4w/checkpoint-1000/trainer_state.json +635 -0
- LLM-Detector-V1-4w/checkpoint-1000/training_args.bin +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/README.md +219 -0
- LLM-Detector-V1-4w/checkpoint-2000/adapter_config.json +22 -0
- LLM-Detector-V1-4w/checkpoint-2000/adapter_model.bin +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/optimizer.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/rng_state.pth +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/scheduler.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/special_tokens_map.json +30 -0
- LLM-Detector-V1-4w/checkpoint-2000/tokenization_baichuan.py +251 -0
- LLM-Detector-V1-4w/checkpoint-2000/tokenizer.model +3 -0
- LLM-Detector-V1-4w/checkpoint-2000/tokenizer_config.json +49 -0
- LLM-Detector-V1-4w/checkpoint-2000/trainer_state.json +1251 -0
- LLM-Detector-V1-4w/checkpoint-2000/training_args.bin +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/README.md +219 -0
- LLM-Detector-V1-4w/checkpoint-3000/adapter_config.json +22 -0
- LLM-Detector-V1-4w/checkpoint-3000/adapter_model.bin +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/optimizer.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/rng_state.pth +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/scheduler.pt +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/special_tokens_map.json +30 -0
- LLM-Detector-V1-4w/checkpoint-3000/tokenization_baichuan.py +251 -0
- LLM-Detector-V1-4w/checkpoint-3000/tokenizer.model +3 -0
- LLM-Detector-V1-4w/checkpoint-3000/tokenizer_config.json +49 -0
- LLM-Detector-V1-4w/checkpoint-3000/trainer_state.json +1867 -0
- LLM-Detector-V1-4w/checkpoint-3000/training_args.bin +3 -0
- LLM-Detector-V1-4w/eval_results.json +7 -0
- LLM-Detector-V1-4w/special_tokens_map.json +30 -0
- LLM-Detector-V1-4w/tokenization_baichuan.py +251 -0
- LLM-Detector-V1-4w/tokenizer.model +3 -0
- LLM-Detector-V1-4w/tokenizer_config.json +49 -0
- LLM-Detector-V1-4w/train_results.json +7 -0
- LLM-Detector-V1-4w/trainer_log.jsonl +362 -0
- LLM-Detector-V1-4w/trainer_state.json +2202 -0
- LLM-Detector-V1-4w/training_args.bin +3 -0
- LLM-Detector-V1-4w/training_eval_loss.png +0 -0
LLM-Detector-V1-4w/README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ../Baichuan2-7B-Chat
|
3 |
+
tags:
|
4 |
+
- llama-factory
|
5 |
+
- lora
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: hc3zh
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# hc3zh
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [../Baichuan2-7B-Chat](https://huggingface.co/../Baichuan2-7B-Chat) on the hc3zh dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0150
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 32
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
+
- num_epochs: 3.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
52 |
+
| 0.0199 | 0.42 | 500 | 0.0105 |
|
53 |
+
| 0.0011 | 0.85 | 1000 | 0.0118 |
|
54 |
+
| 0.0001 | 1.27 | 1500 | 0.0110 |
|
55 |
+
| 0.0143 | 1.7 | 2000 | 0.0135 |
|
56 |
+
| 0.0001 | 2.12 | 2500 | 0.0129 |
|
57 |
+
| 0.0001 | 2.55 | 3000 | 0.0145 |
|
58 |
+
| 0.002 | 2.97 | 3500 | 0.0150 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.32.1
|
64 |
+
- Pytorch 2.1.0+cu121
|
65 |
+
- Datasets 2.14.6
|
66 |
+
- Tokenizers 0.13.2
|
LLM-Detector-V1-4w/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../Baichuan2-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"W_pack"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V1-4w/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43824a5d6a7ba3851d5cdec7eaebba477ebc4dc160eeeb85afd21cc987ec7440
|
3 |
+
size 16800430
|
LLM-Detector-V1-4w/all_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.014986271038651466,
|
4 |
+
"eval_runtime": 87.9616,
|
5 |
+
"eval_samples_per_second": 22.544,
|
6 |
+
"eval_steps_per_second": 2.819,
|
7 |
+
"train_loss": 0.06714861565509712,
|
8 |
+
"train_runtime": 17560.0547,
|
9 |
+
"train_samples_per_second": 6.434,
|
10 |
+
"train_steps_per_second": 0.201
|
11 |
+
}
|
LLM-Detector-V1-4w/checkpoint-1000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../Baichuan2-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.0
|
LLM-Detector-V1-4w/checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../Baichuan2-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"W_pack"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V1-4w/checkpoint-1000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe40450b2fbd3f10782fef8e66d9acb4e5cac016892e806376a3af80925fad96
|
3 |
+
size 16800430
|
LLM-Detector-V1-4w/checkpoint-1000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18bddeeaa98c46d5d2497ed51b747e5fe4c7ee27d855dfe46460ce899dc2bf53
|
3 |
+
size 33608634
|
LLM-Detector-V1-4w/checkpoint-1000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83da651fcd152de69564c4b12041693577b33619275f061f47eaa1672c885e33
|
3 |
+
size 14244
|
LLM-Detector-V1-4w/checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bd3b1194329dcc74504173cf2ff77c083a42ad7882c159146ad4a1df92ffee3
|
3 |
+
size 1064
|
LLM-Detector-V1-4w/checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
LLM-Detector-V1-4w/checkpoint-1000/tokenization_baichuan.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {},
|
38 |
+
"tokenizer_file": {},
|
39 |
+
}
|
40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
41 |
+
|
42 |
+
|
43 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
44 |
+
"""
|
45 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
vocab_file (`str`):
|
49 |
+
Path to the vocabulary file.
|
50 |
+
"""
|
51 |
+
|
52 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
53 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
54 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
55 |
+
model_input_names = ["input_ids", "attention_mask"]
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_file,
|
60 |
+
unk_token="<unk>",
|
61 |
+
bos_token="<s>",
|
62 |
+
eos_token="</s>",
|
63 |
+
pad_token=None,
|
64 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
+
add_bos_token=True,
|
66 |
+
add_eos_token=False,
|
67 |
+
clean_up_tokenization_spaces=False,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
71 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
72 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
73 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
74 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
75 |
+
super().__init__(
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
add_bos_token=add_bos_token,
|
81 |
+
add_eos_token=add_eos_token,
|
82 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
83 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.add_bos_token = add_bos_token
|
88 |
+
self.add_eos_token = add_eos_token
|
89 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
90 |
+
self.sp_model.Load(vocab_file)
|
91 |
+
|
92 |
+
def __getstate__(self):
|
93 |
+
state = self.__dict__.copy()
|
94 |
+
state["sp_model"] = None
|
95 |
+
return state
|
96 |
+
|
97 |
+
def __setstate__(self, d):
|
98 |
+
self.__dict__ = d
|
99 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
100 |
+
self.sp_model.Load(self.vocab_file)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
"""Returns vocab size"""
|
105 |
+
return self.sp_model.get_piece_size()
|
106 |
+
|
107 |
+
def get_vocab(self):
|
108 |
+
"""Returns vocab as a dict"""
|
109 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
110 |
+
vocab.update(self.added_tokens_encoder)
|
111 |
+
return vocab
|
112 |
+
|
113 |
+
def _tokenize(self, text):
|
114 |
+
"""Returns a tokenized string."""
|
115 |
+
return self.sp_model.encode(text, out_type=str)
|
116 |
+
|
117 |
+
def _convert_token_to_id(self, token):
|
118 |
+
"""Converts a token (str) in an id using the vocab."""
|
119 |
+
return self.sp_model.piece_to_id(token)
|
120 |
+
|
121 |
+
def _convert_id_to_token(self, index):
|
122 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
123 |
+
token = self.sp_model.IdToPiece(index)
|
124 |
+
return token
|
125 |
+
|
126 |
+
def convert_tokens_to_string(self, tokens):
|
127 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
128 |
+
current_sub_tokens = []
|
129 |
+
out_string = ""
|
130 |
+
prev_is_special = False
|
131 |
+
for i, token in enumerate(tokens):
|
132 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
133 |
+
if token in self.all_special_tokens:
|
134 |
+
if not prev_is_special and i != 0:
|
135 |
+
out_string += " "
|
136 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
137 |
+
prev_is_special = True
|
138 |
+
current_sub_tokens = []
|
139 |
+
else:
|
140 |
+
current_sub_tokens.append(token)
|
141 |
+
prev_is_special = False
|
142 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
143 |
+
return out_string
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, "wb") as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
174 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
175 |
+
|
176 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
177 |
+
|
178 |
+
if token_ids_1 is not None:
|
179 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
180 |
+
|
181 |
+
return output
|
182 |
+
|
183 |
+
def get_special_tokens_mask(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
188 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
token_ids_0 (`List[int]`):
|
192 |
+
List of IDs.
|
193 |
+
token_ids_1 (`List[int]`, *optional*):
|
194 |
+
Optional second list of IDs for sequence pairs.
|
195 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
196 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
200 |
+
"""
|
201 |
+
if already_has_special_tokens:
|
202 |
+
return super().get_special_tokens_mask(
|
203 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
204 |
+
)
|
205 |
+
|
206 |
+
bos_token_id = [1] if self.add_bos_token else []
|
207 |
+
eos_token_id = [1] if self.add_eos_token else []
|
208 |
+
|
209 |
+
if token_ids_1 is None:
|
210 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
211 |
+
return (
|
212 |
+
bos_token_id
|
213 |
+
+ ([0] * len(token_ids_0))
|
214 |
+
+ eos_token_id
|
215 |
+
+ bos_token_id
|
216 |
+
+ ([0] * len(token_ids_1))
|
217 |
+
+ eos_token_id
|
218 |
+
)
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
225 |
+
sequence pair mask has the following format:
|
226 |
+
|
227 |
+
```
|
228 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
229 |
+
| first sequence | second sequence |
|
230 |
+
```
|
231 |
+
|
232 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of ids.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
242 |
+
"""
|
243 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
244 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
245 |
+
|
246 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
247 |
+
|
248 |
+
if token_ids_1 is not None:
|
249 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
250 |
+
|
251 |
+
return output
|
LLM-Detector-V1-4w/checkpoint-1000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
LLM-Detector-V1-4w/checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"split_special_tokens": false,
|
39 |
+
"tokenizer_class": "BaichuanTokenizer",
|
40 |
+
"unk_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<unk>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": true
|
47 |
+
},
|
48 |
+
"use_fast": false
|
49 |
+
}
|
LLM-Detector-V1-4w/checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.8496176720475785,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999919851200522e-05,
|
14 |
+
"loss": 9.9461,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9996428002198536e-05,
|
20 |
+
"loss": 6.4908,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 4.9992242747551964e-05,
|
26 |
+
"loss": 3.708,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.99857130295276e-05,
|
32 |
+
"loss": 0.8908,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04,
|
37 |
+
"learning_rate": 4.997720546222574e-05,
|
38 |
+
"loss": 0.2454,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.05,
|
43 |
+
"learning_rate": 4.996672071909866e-05,
|
44 |
+
"loss": 0.1348,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"learning_rate": 4.995425963011034e-05,
|
50 |
+
"loss": 0.0487,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"learning_rate": 4.993982318167074e-05,
|
56 |
+
"loss": 0.0282,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 4.992341251655768e-05,
|
62 |
+
"loss": 0.0455,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.08,
|
67 |
+
"learning_rate": 4.9905028933826435e-05,
|
68 |
+
"loss": 0.0472,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.09,
|
73 |
+
"learning_rate": 4.988467388870688e-05,
|
74 |
+
"loss": 0.0526,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.1,
|
79 |
+
"learning_rate": 4.986234899248826e-05,
|
80 |
+
"loss": 0.0679,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.11,
|
85 |
+
"learning_rate": 4.983805601239172e-05,
|
86 |
+
"loss": 0.0314,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.12,
|
91 |
+
"learning_rate": 4.981179687143034e-05,
|
92 |
+
"loss": 0.0136,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.13,
|
97 |
+
"learning_rate": 4.978357364825695e-05,
|
98 |
+
"loss": 0.0409,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.14,
|
103 |
+
"learning_rate": 4.975338857699956e-05,
|
104 |
+
"loss": 0.0284,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.14,
|
109 |
+
"learning_rate": 4.972124404708454e-05,
|
110 |
+
"loss": 0.0364,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.15,
|
115 |
+
"learning_rate": 4.968714260304743e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.16,
|
121 |
+
"learning_rate": 4.965108694433159e-05,
|
122 |
+
"loss": 0.0174,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.17,
|
127 |
+
"learning_rate": 4.961307992507443e-05,
|
128 |
+
"loss": 0.0244,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.18,
|
133 |
+
"learning_rate": 4.957312455388152e-05,
|
134 |
+
"loss": 0.0387,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.19,
|
139 |
+
"learning_rate": 4.953122399358845e-05,
|
140 |
+
"loss": 0.0264,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.2,
|
145 |
+
"learning_rate": 4.948738156101042e-05,
|
146 |
+
"loss": 0.0291,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.2,
|
151 |
+
"learning_rate": 4.9441600726679694e-05,
|
152 |
+
"loss": 0.0214,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.21,
|
157 |
+
"learning_rate": 4.939388511457092e-05,
|
158 |
+
"loss": 0.0116,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.22,
|
163 |
+
"learning_rate": 4.934423850181419e-05,
|
164 |
+
"loss": 0.0191,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.23,
|
169 |
+
"learning_rate": 4.9292664818396117e-05,
|
170 |
+
"loss": 0.0064,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.24,
|
175 |
+
"learning_rate": 4.9239168146848666e-05,
|
176 |
+
"loss": 0.0184,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.25,
|
181 |
+
"learning_rate": 4.9183752721926036e-05,
|
182 |
+
"loss": 0.0026,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.25,
|
187 |
+
"learning_rate": 4.912642293026942e-05,
|
188 |
+
"loss": 0.0223,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.26,
|
193 |
+
"learning_rate": 4.906718331005979e-05,
|
194 |
+
"loss": 0.0405,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.27,
|
199 |
+
"learning_rate": 4.900603855065861e-05,
|
200 |
+
"loss": 0.0461,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.28,
|
205 |
+
"learning_rate": 4.894299349223665e-05,
|
206 |
+
"loss": 0.0199,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.29,
|
211 |
+
"learning_rate": 4.8878053125390875e-05,
|
212 |
+
"loss": 0.0193,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.3,
|
217 |
+
"learning_rate": 4.881122259074935e-05,
|
218 |
+
"loss": 0.004,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.31,
|
223 |
+
"learning_rate": 4.874250717856433e-05,
|
224 |
+
"loss": 0.0018,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.31,
|
229 |
+
"learning_rate": 4.867191232829348e-05,
|
230 |
+
"loss": 0.0021,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.32,
|
235 |
+
"learning_rate": 4.8599443628169295e-05,
|
236 |
+
"loss": 0.018,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.33,
|
241 |
+
"learning_rate": 4.8525106814756754e-05,
|
242 |
+
"loss": 0.0261,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.34,
|
247 |
+
"learning_rate": 4.84489077724992e-05,
|
248 |
+
"loss": 0.016,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.35,
|
253 |
+
"learning_rate": 4.8370852533252536e-05,
|
254 |
+
"loss": 0.0402,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.36,
|
259 |
+
"learning_rate": 4.8290947275807755e-05,
|
260 |
+
"loss": 0.0038,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.37,
|
265 |
+
"learning_rate": 4.8209198325401815e-05,
|
266 |
+
"loss": 0.008,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.37,
|
271 |
+
"learning_rate": 4.8125612153216976e-05,
|
272 |
+
"loss": 0.0296,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.38,
|
277 |
+
"learning_rate": 4.804019537586849e-05,
|
278 |
+
"loss": 0.0012,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.39,
|
283 |
+
"learning_rate": 4.7952954754880886e-05,
|
284 |
+
"loss": 0.0142,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.4,
|
289 |
+
"learning_rate": 4.7863897196152704e-05,
|
290 |
+
"loss": 0.0163,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.41,
|
295 |
+
"learning_rate": 4.7773029749409836e-05,
|
296 |
+
"loss": 0.0021,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.42,
|
301 |
+
"learning_rate": 4.76803596076475e-05,
|
302 |
+
"loss": 0.0355,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.42,
|
307 |
+
"learning_rate": 4.758589410656078e-05,
|
308 |
+
"loss": 0.0199,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.42,
|
313 |
+
"eval_loss": 0.010466881096363068,
|
314 |
+
"eval_runtime": 88.037,
|
315 |
+
"eval_samples_per_second": 22.525,
|
316 |
+
"eval_steps_per_second": 2.817,
|
317 |
+
"step": 500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"learning_rate": 4.748964072396403e-05,
|
322 |
+
"loss": 0.0341,
|
323 |
+
"step": 510
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.44,
|
327 |
+
"learning_rate": 4.7391607079198876e-05,
|
328 |
+
"loss": 0.0137,
|
329 |
+
"step": 520
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.45,
|
333 |
+
"learning_rate": 4.7291800932531064e-05,
|
334 |
+
"loss": 0.0138,
|
335 |
+
"step": 530
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.46,
|
339 |
+
"learning_rate": 4.719023018453623e-05,
|
340 |
+
"loss": 0.0063,
|
341 |
+
"step": 540
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.47,
|
345 |
+
"learning_rate": 4.708690287547441e-05,
|
346 |
+
"loss": 0.0376,
|
347 |
+
"step": 550
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.48,
|
351 |
+
"learning_rate": 4.698182718465368e-05,
|
352 |
+
"loss": 0.006,
|
353 |
+
"step": 560
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.48,
|
357 |
+
"learning_rate": 4.687501142978258e-05,
|
358 |
+
"loss": 0.0371,
|
359 |
+
"step": 570
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.49,
|
363 |
+
"learning_rate": 4.6766464066311765e-05,
|
364 |
+
"loss": 0.0322,
|
365 |
+
"step": 580
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.5,
|
369 |
+
"learning_rate": 4.665619368676466e-05,
|
370 |
+
"loss": 0.0086,
|
371 |
+
"step": 590
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.51,
|
375 |
+
"learning_rate": 4.6544209020057285e-05,
|
376 |
+
"loss": 0.002,
|
377 |
+
"step": 600
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.52,
|
381 |
+
"learning_rate": 4.643051893080725e-05,
|
382 |
+
"loss": 0.0147,
|
383 |
+
"step": 610
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.53,
|
387 |
+
"learning_rate": 4.631513241863209e-05,
|
388 |
+
"loss": 0.0038,
|
389 |
+
"step": 620
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.54,
|
393 |
+
"learning_rate": 4.619805861743683e-05,
|
394 |
+
"loss": 0.0187,
|
395 |
+
"step": 630
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.54,
|
399 |
+
"learning_rate": 4.607930679469096e-05,
|
400 |
+
"loss": 0.0063,
|
401 |
+
"step": 640
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.55,
|
405 |
+
"learning_rate": 4.595888635069481e-05,
|
406 |
+
"loss": 0.0109,
|
407 |
+
"step": 650
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.56,
|
411 |
+
"learning_rate": 4.5836806817835475e-05,
|
412 |
+
"loss": 0.005,
|
413 |
+
"step": 660
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.57,
|
417 |
+
"learning_rate": 4.57130778598322e-05,
|
418 |
+
"loss": 0.0167,
|
419 |
+
"step": 670
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.58,
|
423 |
+
"learning_rate": 4.5587709270971425e-05,
|
424 |
+
"loss": 0.0143,
|
425 |
+
"step": 680
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.59,
|
429 |
+
"learning_rate": 4.546071097533145e-05,
|
430 |
+
"loss": 0.0015,
|
431 |
+
"step": 690
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.59,
|
435 |
+
"learning_rate": 4.533209302599691e-05,
|
436 |
+
"loss": 0.0003,
|
437 |
+
"step": 700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.6,
|
441 |
+
"learning_rate": 4.520186560426292e-05,
|
442 |
+
"loss": 0.006,
|
443 |
+
"step": 710
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.61,
|
447 |
+
"learning_rate": 4.507003901882915e-05,
|
448 |
+
"loss": 0.0093,
|
449 |
+
"step": 720
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.62,
|
453 |
+
"learning_rate": 4.493662370498383e-05,
|
454 |
+
"loss": 0.0046,
|
455 |
+
"step": 730
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.63,
|
459 |
+
"learning_rate": 4.4801630223777665e-05,
|
460 |
+
"loss": 0.0147,
|
461 |
+
"step": 740
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.64,
|
465 |
+
"learning_rate": 4.466506926118782e-05,
|
466 |
+
"loss": 0.0102,
|
467 |
+
"step": 750
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.65,
|
471 |
+
"learning_rate": 4.4526951627272074e-05,
|
472 |
+
"loss": 0.017,
|
473 |
+
"step": 760
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.65,
|
477 |
+
"learning_rate": 4.438728825531305e-05,
|
478 |
+
"loss": 0.0033,
|
479 |
+
"step": 770
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.66,
|
483 |
+
"learning_rate": 4.4246090200952816e-05,
|
484 |
+
"loss": 0.0061,
|
485 |
+
"step": 780
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.67,
|
489 |
+
"learning_rate": 4.410336864131762e-05,
|
490 |
+
"loss": 0.0032,
|
491 |
+
"step": 790
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.68,
|
495 |
+
"learning_rate": 4.395913487413324e-05,
|
496 |
+
"loss": 0.0043,
|
497 |
+
"step": 800
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.69,
|
501 |
+
"learning_rate": 4.3813400316830576e-05,
|
502 |
+
"loss": 0.0063,
|
503 |
+
"step": 810
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.7,
|
507 |
+
"learning_rate": 4.36661765056419e-05,
|
508 |
+
"loss": 0.0273,
|
509 |
+
"step": 820
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.71,
|
513 |
+
"learning_rate": 4.351747509468763e-05,
|
514 |
+
"loss": 0.0125,
|
515 |
+
"step": 830
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.71,
|
519 |
+
"learning_rate": 4.336730785505382e-05,
|
520 |
+
"loss": 0.0076,
|
521 |
+
"step": 840
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.72,
|
525 |
+
"learning_rate": 4.3215686673860384e-05,
|
526 |
+
"loss": 0.0127,
|
527 |
+
"step": 850
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.73,
|
531 |
+
"learning_rate": 4.306262355332006e-05,
|
532 |
+
"loss": 0.0161,
|
533 |
+
"step": 860
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.74,
|
537 |
+
"learning_rate": 4.290813060978839e-05,
|
538 |
+
"loss": 0.0169,
|
539 |
+
"step": 870
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.75,
|
543 |
+
"learning_rate": 4.2752220072804564e-05,
|
544 |
+
"loss": 0.0081,
|
545 |
+
"step": 880
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.76,
|
549 |
+
"learning_rate": 4.259490428412335e-05,
|
550 |
+
"loss": 0.0131,
|
551 |
+
"step": 890
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.76,
|
555 |
+
"learning_rate": 4.243619569673814e-05,
|
556 |
+
"loss": 0.0205,
|
557 |
+
"step": 900
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.77,
|
561 |
+
"learning_rate": 4.2276106873895143e-05,
|
562 |
+
"loss": 0.0026,
|
563 |
+
"step": 910
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.78,
|
567 |
+
"learning_rate": 4.2114650488098936e-05,
|
568 |
+
"loss": 0.018,
|
569 |
+
"step": 920
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.79,
|
573 |
+
"learning_rate": 4.19518393201093e-05,
|
574 |
+
"loss": 0.0083,
|
575 |
+
"step": 930
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.8,
|
579 |
+
"learning_rate": 4.178768625792949e-05,
|
580 |
+
"loss": 0.0291,
|
581 |
+
"step": 940
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.81,
|
585 |
+
"learning_rate": 4.162220429578605e-05,
|
586 |
+
"loss": 0.0226,
|
587 |
+
"step": 950
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.82,
|
591 |
+
"learning_rate": 4.145540653310018e-05,
|
592 |
+
"loss": 0.0042,
|
593 |
+
"step": 960
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.82,
|
597 |
+
"learning_rate": 4.128730617345084e-05,
|
598 |
+
"loss": 0.0078,
|
599 |
+
"step": 970
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.83,
|
603 |
+
"learning_rate": 4.111791652352952e-05,
|
604 |
+
"loss": 0.0084,
|
605 |
+
"step": 980
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.84,
|
609 |
+
"learning_rate": 4.094725099208688e-05,
|
610 |
+
"loss": 0.0044,
|
611 |
+
"step": 990
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.85,
|
615 |
+
"learning_rate": 4.077532308887141e-05,
|
616 |
+
"loss": 0.0011,
|
617 |
+
"step": 1000
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.85,
|
621 |
+
"eval_loss": 0.01175768580287695,
|
622 |
+
"eval_runtime": 88.0904,
|
623 |
+
"eval_samples_per_second": 22.511,
|
624 |
+
"eval_steps_per_second": 2.815,
|
625 |
+
"step": 1000
|
626 |
+
}
|
627 |
+
],
|
628 |
+
"logging_steps": 10,
|
629 |
+
"max_steps": 3531,
|
630 |
+
"num_train_epochs": 3,
|
631 |
+
"save_steps": 1000,
|
632 |
+
"total_flos": 1.5022667366085427e+17,
|
633 |
+
"trial_name": null,
|
634 |
+
"trial_params": null
|
635 |
+
}
|
LLM-Detector-V1-4w/checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
|
3 |
+
size 4664
|
LLM-Detector-V1-4w/checkpoint-2000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../Baichuan2-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.0
|
LLM-Detector-V1-4w/checkpoint-2000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../Baichuan2-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"W_pack"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V1-4w/checkpoint-2000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9664fcda9f9455692ac077930f9807e40a74bbb1391a6cc8dff6f1da2753d7b7
|
3 |
+
size 16800430
|
LLM-Detector-V1-4w/checkpoint-2000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19e1df2c7ebe4ba45177d9926132b2249e61306c5a47e8594117807499496934
|
3 |
+
size 33608634
|
LLM-Detector-V1-4w/checkpoint-2000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efd859252932a9e3ea8978d62ba6b8ca255ea2df13637ed0a28deb7bd5f76e91
|
3 |
+
size 14244
|
LLM-Detector-V1-4w/checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dd0fc895c7505f36c0d10a7fb566f688f4529581ce3e22f1659966dcc265a99
|
3 |
+
size 1064
|
LLM-Detector-V1-4w/checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
LLM-Detector-V1-4w/checkpoint-2000/tokenization_baichuan.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {},
|
38 |
+
"tokenizer_file": {},
|
39 |
+
}
|
40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
41 |
+
|
42 |
+
|
43 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
44 |
+
"""
|
45 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
vocab_file (`str`):
|
49 |
+
Path to the vocabulary file.
|
50 |
+
"""
|
51 |
+
|
52 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
53 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
54 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
55 |
+
model_input_names = ["input_ids", "attention_mask"]
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_file,
|
60 |
+
unk_token="<unk>",
|
61 |
+
bos_token="<s>",
|
62 |
+
eos_token="</s>",
|
63 |
+
pad_token=None,
|
64 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
+
add_bos_token=True,
|
66 |
+
add_eos_token=False,
|
67 |
+
clean_up_tokenization_spaces=False,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
71 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
72 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
73 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
74 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
75 |
+
super().__init__(
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
add_bos_token=add_bos_token,
|
81 |
+
add_eos_token=add_eos_token,
|
82 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
83 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.add_bos_token = add_bos_token
|
88 |
+
self.add_eos_token = add_eos_token
|
89 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
90 |
+
self.sp_model.Load(vocab_file)
|
91 |
+
|
92 |
+
def __getstate__(self):
|
93 |
+
state = self.__dict__.copy()
|
94 |
+
state["sp_model"] = None
|
95 |
+
return state
|
96 |
+
|
97 |
+
def __setstate__(self, d):
|
98 |
+
self.__dict__ = d
|
99 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
100 |
+
self.sp_model.Load(self.vocab_file)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
"""Returns vocab size"""
|
105 |
+
return self.sp_model.get_piece_size()
|
106 |
+
|
107 |
+
def get_vocab(self):
|
108 |
+
"""Returns vocab as a dict"""
|
109 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
110 |
+
vocab.update(self.added_tokens_encoder)
|
111 |
+
return vocab
|
112 |
+
|
113 |
+
def _tokenize(self, text):
|
114 |
+
"""Returns a tokenized string."""
|
115 |
+
return self.sp_model.encode(text, out_type=str)
|
116 |
+
|
117 |
+
def _convert_token_to_id(self, token):
|
118 |
+
"""Converts a token (str) in an id using the vocab."""
|
119 |
+
return self.sp_model.piece_to_id(token)
|
120 |
+
|
121 |
+
def _convert_id_to_token(self, index):
|
122 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
123 |
+
token = self.sp_model.IdToPiece(index)
|
124 |
+
return token
|
125 |
+
|
126 |
+
def convert_tokens_to_string(self, tokens):
|
127 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
128 |
+
current_sub_tokens = []
|
129 |
+
out_string = ""
|
130 |
+
prev_is_special = False
|
131 |
+
for i, token in enumerate(tokens):
|
132 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
133 |
+
if token in self.all_special_tokens:
|
134 |
+
if not prev_is_special and i != 0:
|
135 |
+
out_string += " "
|
136 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
137 |
+
prev_is_special = True
|
138 |
+
current_sub_tokens = []
|
139 |
+
else:
|
140 |
+
current_sub_tokens.append(token)
|
141 |
+
prev_is_special = False
|
142 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
143 |
+
return out_string
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, "wb") as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
174 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
175 |
+
|
176 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
177 |
+
|
178 |
+
if token_ids_1 is not None:
|
179 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
180 |
+
|
181 |
+
return output
|
182 |
+
|
183 |
+
def get_special_tokens_mask(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
188 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
token_ids_0 (`List[int]`):
|
192 |
+
List of IDs.
|
193 |
+
token_ids_1 (`List[int]`, *optional*):
|
194 |
+
Optional second list of IDs for sequence pairs.
|
195 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
196 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
200 |
+
"""
|
201 |
+
if already_has_special_tokens:
|
202 |
+
return super().get_special_tokens_mask(
|
203 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
204 |
+
)
|
205 |
+
|
206 |
+
bos_token_id = [1] if self.add_bos_token else []
|
207 |
+
eos_token_id = [1] if self.add_eos_token else []
|
208 |
+
|
209 |
+
if token_ids_1 is None:
|
210 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
211 |
+
return (
|
212 |
+
bos_token_id
|
213 |
+
+ ([0] * len(token_ids_0))
|
214 |
+
+ eos_token_id
|
215 |
+
+ bos_token_id
|
216 |
+
+ ([0] * len(token_ids_1))
|
217 |
+
+ eos_token_id
|
218 |
+
)
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
225 |
+
sequence pair mask has the following format:
|
226 |
+
|
227 |
+
```
|
228 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
229 |
+
| first sequence | second sequence |
|
230 |
+
```
|
231 |
+
|
232 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of ids.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
242 |
+
"""
|
243 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
244 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
245 |
+
|
246 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
247 |
+
|
248 |
+
if token_ids_1 is not None:
|
249 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
250 |
+
|
251 |
+
return output
|
LLM-Detector-V1-4w/checkpoint-2000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
LLM-Detector-V1-4w/checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"split_special_tokens": false,
|
39 |
+
"tokenizer_class": "BaichuanTokenizer",
|
40 |
+
"unk_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<unk>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": true
|
47 |
+
},
|
48 |
+
"use_fast": false
|
49 |
+
}
|
LLM-Detector-V1-4w/checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,1251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.699235344095157,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999919851200522e-05,
|
14 |
+
"loss": 9.9461,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9996428002198536e-05,
|
20 |
+
"loss": 6.4908,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 4.9992242747551964e-05,
|
26 |
+
"loss": 3.708,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.99857130295276e-05,
|
32 |
+
"loss": 0.8908,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04,
|
37 |
+
"learning_rate": 4.997720546222574e-05,
|
38 |
+
"loss": 0.2454,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.05,
|
43 |
+
"learning_rate": 4.996672071909866e-05,
|
44 |
+
"loss": 0.1348,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"learning_rate": 4.995425963011034e-05,
|
50 |
+
"loss": 0.0487,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"learning_rate": 4.993982318167074e-05,
|
56 |
+
"loss": 0.0282,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 4.992341251655768e-05,
|
62 |
+
"loss": 0.0455,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.08,
|
67 |
+
"learning_rate": 4.9905028933826435e-05,
|
68 |
+
"loss": 0.0472,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.09,
|
73 |
+
"learning_rate": 4.988467388870688e-05,
|
74 |
+
"loss": 0.0526,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.1,
|
79 |
+
"learning_rate": 4.986234899248826e-05,
|
80 |
+
"loss": 0.0679,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.11,
|
85 |
+
"learning_rate": 4.983805601239172e-05,
|
86 |
+
"loss": 0.0314,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.12,
|
91 |
+
"learning_rate": 4.981179687143034e-05,
|
92 |
+
"loss": 0.0136,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.13,
|
97 |
+
"learning_rate": 4.978357364825695e-05,
|
98 |
+
"loss": 0.0409,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.14,
|
103 |
+
"learning_rate": 4.975338857699956e-05,
|
104 |
+
"loss": 0.0284,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.14,
|
109 |
+
"learning_rate": 4.972124404708454e-05,
|
110 |
+
"loss": 0.0364,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.15,
|
115 |
+
"learning_rate": 4.968714260304743e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.16,
|
121 |
+
"learning_rate": 4.965108694433159e-05,
|
122 |
+
"loss": 0.0174,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.17,
|
127 |
+
"learning_rate": 4.961307992507443e-05,
|
128 |
+
"loss": 0.0244,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.18,
|
133 |
+
"learning_rate": 4.957312455388152e-05,
|
134 |
+
"loss": 0.0387,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.19,
|
139 |
+
"learning_rate": 4.953122399358845e-05,
|
140 |
+
"loss": 0.0264,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.2,
|
145 |
+
"learning_rate": 4.948738156101042e-05,
|
146 |
+
"loss": 0.0291,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.2,
|
151 |
+
"learning_rate": 4.9441600726679694e-05,
|
152 |
+
"loss": 0.0214,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.21,
|
157 |
+
"learning_rate": 4.939388511457092e-05,
|
158 |
+
"loss": 0.0116,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.22,
|
163 |
+
"learning_rate": 4.934423850181419e-05,
|
164 |
+
"loss": 0.0191,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.23,
|
169 |
+
"learning_rate": 4.9292664818396117e-05,
|
170 |
+
"loss": 0.0064,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.24,
|
175 |
+
"learning_rate": 4.9239168146848666e-05,
|
176 |
+
"loss": 0.0184,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.25,
|
181 |
+
"learning_rate": 4.9183752721926036e-05,
|
182 |
+
"loss": 0.0026,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.25,
|
187 |
+
"learning_rate": 4.912642293026942e-05,
|
188 |
+
"loss": 0.0223,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.26,
|
193 |
+
"learning_rate": 4.906718331005979e-05,
|
194 |
+
"loss": 0.0405,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.27,
|
199 |
+
"learning_rate": 4.900603855065861e-05,
|
200 |
+
"loss": 0.0461,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.28,
|
205 |
+
"learning_rate": 4.894299349223665e-05,
|
206 |
+
"loss": 0.0199,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.29,
|
211 |
+
"learning_rate": 4.8878053125390875e-05,
|
212 |
+
"loss": 0.0193,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.3,
|
217 |
+
"learning_rate": 4.881122259074935e-05,
|
218 |
+
"loss": 0.004,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.31,
|
223 |
+
"learning_rate": 4.874250717856433e-05,
|
224 |
+
"loss": 0.0018,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.31,
|
229 |
+
"learning_rate": 4.867191232829348e-05,
|
230 |
+
"loss": 0.0021,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.32,
|
235 |
+
"learning_rate": 4.8599443628169295e-05,
|
236 |
+
"loss": 0.018,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.33,
|
241 |
+
"learning_rate": 4.8525106814756754e-05,
|
242 |
+
"loss": 0.0261,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.34,
|
247 |
+
"learning_rate": 4.84489077724992e-05,
|
248 |
+
"loss": 0.016,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.35,
|
253 |
+
"learning_rate": 4.8370852533252536e-05,
|
254 |
+
"loss": 0.0402,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.36,
|
259 |
+
"learning_rate": 4.8290947275807755e-05,
|
260 |
+
"loss": 0.0038,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.37,
|
265 |
+
"learning_rate": 4.8209198325401815e-05,
|
266 |
+
"loss": 0.008,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.37,
|
271 |
+
"learning_rate": 4.8125612153216976e-05,
|
272 |
+
"loss": 0.0296,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.38,
|
277 |
+
"learning_rate": 4.804019537586849e-05,
|
278 |
+
"loss": 0.0012,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.39,
|
283 |
+
"learning_rate": 4.7952954754880886e-05,
|
284 |
+
"loss": 0.0142,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.4,
|
289 |
+
"learning_rate": 4.7863897196152704e-05,
|
290 |
+
"loss": 0.0163,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.41,
|
295 |
+
"learning_rate": 4.7773029749409836e-05,
|
296 |
+
"loss": 0.0021,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.42,
|
301 |
+
"learning_rate": 4.76803596076475e-05,
|
302 |
+
"loss": 0.0355,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.42,
|
307 |
+
"learning_rate": 4.758589410656078e-05,
|
308 |
+
"loss": 0.0199,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.42,
|
313 |
+
"eval_loss": 0.010466881096363068,
|
314 |
+
"eval_runtime": 88.037,
|
315 |
+
"eval_samples_per_second": 22.525,
|
316 |
+
"eval_steps_per_second": 2.817,
|
317 |
+
"step": 500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"learning_rate": 4.748964072396403e-05,
|
322 |
+
"loss": 0.0341,
|
323 |
+
"step": 510
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.44,
|
327 |
+
"learning_rate": 4.7391607079198876e-05,
|
328 |
+
"loss": 0.0137,
|
329 |
+
"step": 520
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.45,
|
333 |
+
"learning_rate": 4.7291800932531064e-05,
|
334 |
+
"loss": 0.0138,
|
335 |
+
"step": 530
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.46,
|
339 |
+
"learning_rate": 4.719023018453623e-05,
|
340 |
+
"loss": 0.0063,
|
341 |
+
"step": 540
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.47,
|
345 |
+
"learning_rate": 4.708690287547441e-05,
|
346 |
+
"loss": 0.0376,
|
347 |
+
"step": 550
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.48,
|
351 |
+
"learning_rate": 4.698182718465368e-05,
|
352 |
+
"loss": 0.006,
|
353 |
+
"step": 560
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.48,
|
357 |
+
"learning_rate": 4.687501142978258e-05,
|
358 |
+
"loss": 0.0371,
|
359 |
+
"step": 570
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.49,
|
363 |
+
"learning_rate": 4.6766464066311765e-05,
|
364 |
+
"loss": 0.0322,
|
365 |
+
"step": 580
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.5,
|
369 |
+
"learning_rate": 4.665619368676466e-05,
|
370 |
+
"loss": 0.0086,
|
371 |
+
"step": 590
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.51,
|
375 |
+
"learning_rate": 4.6544209020057285e-05,
|
376 |
+
"loss": 0.002,
|
377 |
+
"step": 600
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.52,
|
381 |
+
"learning_rate": 4.643051893080725e-05,
|
382 |
+
"loss": 0.0147,
|
383 |
+
"step": 610
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.53,
|
387 |
+
"learning_rate": 4.631513241863209e-05,
|
388 |
+
"loss": 0.0038,
|
389 |
+
"step": 620
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.54,
|
393 |
+
"learning_rate": 4.619805861743683e-05,
|
394 |
+
"loss": 0.0187,
|
395 |
+
"step": 630
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.54,
|
399 |
+
"learning_rate": 4.607930679469096e-05,
|
400 |
+
"loss": 0.0063,
|
401 |
+
"step": 640
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.55,
|
405 |
+
"learning_rate": 4.595888635069481e-05,
|
406 |
+
"loss": 0.0109,
|
407 |
+
"step": 650
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.56,
|
411 |
+
"learning_rate": 4.5836806817835475e-05,
|
412 |
+
"loss": 0.005,
|
413 |
+
"step": 660
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.57,
|
417 |
+
"learning_rate": 4.57130778598322e-05,
|
418 |
+
"loss": 0.0167,
|
419 |
+
"step": 670
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.58,
|
423 |
+
"learning_rate": 4.5587709270971425e-05,
|
424 |
+
"loss": 0.0143,
|
425 |
+
"step": 680
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.59,
|
429 |
+
"learning_rate": 4.546071097533145e-05,
|
430 |
+
"loss": 0.0015,
|
431 |
+
"step": 690
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.59,
|
435 |
+
"learning_rate": 4.533209302599691e-05,
|
436 |
+
"loss": 0.0003,
|
437 |
+
"step": 700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.6,
|
441 |
+
"learning_rate": 4.520186560426292e-05,
|
442 |
+
"loss": 0.006,
|
443 |
+
"step": 710
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.61,
|
447 |
+
"learning_rate": 4.507003901882915e-05,
|
448 |
+
"loss": 0.0093,
|
449 |
+
"step": 720
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.62,
|
453 |
+
"learning_rate": 4.493662370498383e-05,
|
454 |
+
"loss": 0.0046,
|
455 |
+
"step": 730
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.63,
|
459 |
+
"learning_rate": 4.4801630223777665e-05,
|
460 |
+
"loss": 0.0147,
|
461 |
+
"step": 740
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.64,
|
465 |
+
"learning_rate": 4.466506926118782e-05,
|
466 |
+
"loss": 0.0102,
|
467 |
+
"step": 750
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.65,
|
471 |
+
"learning_rate": 4.4526951627272074e-05,
|
472 |
+
"loss": 0.017,
|
473 |
+
"step": 760
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.65,
|
477 |
+
"learning_rate": 4.438728825531305e-05,
|
478 |
+
"loss": 0.0033,
|
479 |
+
"step": 770
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.66,
|
483 |
+
"learning_rate": 4.4246090200952816e-05,
|
484 |
+
"loss": 0.0061,
|
485 |
+
"step": 780
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.67,
|
489 |
+
"learning_rate": 4.410336864131762e-05,
|
490 |
+
"loss": 0.0032,
|
491 |
+
"step": 790
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.68,
|
495 |
+
"learning_rate": 4.395913487413324e-05,
|
496 |
+
"loss": 0.0043,
|
497 |
+
"step": 800
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.69,
|
501 |
+
"learning_rate": 4.3813400316830576e-05,
|
502 |
+
"loss": 0.0063,
|
503 |
+
"step": 810
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.7,
|
507 |
+
"learning_rate": 4.36661765056419e-05,
|
508 |
+
"loss": 0.0273,
|
509 |
+
"step": 820
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.71,
|
513 |
+
"learning_rate": 4.351747509468763e-05,
|
514 |
+
"loss": 0.0125,
|
515 |
+
"step": 830
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.71,
|
519 |
+
"learning_rate": 4.336730785505382e-05,
|
520 |
+
"loss": 0.0076,
|
521 |
+
"step": 840
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.72,
|
525 |
+
"learning_rate": 4.3215686673860384e-05,
|
526 |
+
"loss": 0.0127,
|
527 |
+
"step": 850
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.73,
|
531 |
+
"learning_rate": 4.306262355332006e-05,
|
532 |
+
"loss": 0.0161,
|
533 |
+
"step": 860
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.74,
|
537 |
+
"learning_rate": 4.290813060978839e-05,
|
538 |
+
"loss": 0.0169,
|
539 |
+
"step": 870
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.75,
|
543 |
+
"learning_rate": 4.2752220072804564e-05,
|
544 |
+
"loss": 0.0081,
|
545 |
+
"step": 880
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.76,
|
549 |
+
"learning_rate": 4.259490428412335e-05,
|
550 |
+
"loss": 0.0131,
|
551 |
+
"step": 890
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.76,
|
555 |
+
"learning_rate": 4.243619569673814e-05,
|
556 |
+
"loss": 0.0205,
|
557 |
+
"step": 900
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.77,
|
561 |
+
"learning_rate": 4.2276106873895143e-05,
|
562 |
+
"loss": 0.0026,
|
563 |
+
"step": 910
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.78,
|
567 |
+
"learning_rate": 4.2114650488098936e-05,
|
568 |
+
"loss": 0.018,
|
569 |
+
"step": 920
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.79,
|
573 |
+
"learning_rate": 4.19518393201093e-05,
|
574 |
+
"loss": 0.0083,
|
575 |
+
"step": 930
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.8,
|
579 |
+
"learning_rate": 4.178768625792949e-05,
|
580 |
+
"loss": 0.0291,
|
581 |
+
"step": 940
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.81,
|
585 |
+
"learning_rate": 4.162220429578605e-05,
|
586 |
+
"loss": 0.0226,
|
587 |
+
"step": 950
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.82,
|
591 |
+
"learning_rate": 4.145540653310018e-05,
|
592 |
+
"loss": 0.0042,
|
593 |
+
"step": 960
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.82,
|
597 |
+
"learning_rate": 4.128730617345084e-05,
|
598 |
+
"loss": 0.0078,
|
599 |
+
"step": 970
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.83,
|
603 |
+
"learning_rate": 4.111791652352952e-05,
|
604 |
+
"loss": 0.0084,
|
605 |
+
"step": 980
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.84,
|
609 |
+
"learning_rate": 4.094725099208688e-05,
|
610 |
+
"loss": 0.0044,
|
611 |
+
"step": 990
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.85,
|
615 |
+
"learning_rate": 4.077532308887141e-05,
|
616 |
+
"loss": 0.0011,
|
617 |
+
"step": 1000
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.85,
|
621 |
+
"eval_loss": 0.01175768580287695,
|
622 |
+
"eval_runtime": 88.0904,
|
623 |
+
"eval_samples_per_second": 22.511,
|
624 |
+
"eval_steps_per_second": 2.815,
|
625 |
+
"step": 1000
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.86,
|
629 |
+
"learning_rate": 4.060214642355989e-05,
|
630 |
+
"loss": 0.0011,
|
631 |
+
"step": 1010
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 0.87,
|
635 |
+
"learning_rate": 4.042773470468016e-05,
|
636 |
+
"loss": 0.021,
|
637 |
+
"step": 1020
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 0.88,
|
641 |
+
"learning_rate": 4.0252101738525916e-05,
|
642 |
+
"loss": 0.0424,
|
643 |
+
"step": 1030
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.88,
|
647 |
+
"learning_rate": 4.0075261428063806e-05,
|
648 |
+
"loss": 0.0194,
|
649 |
+
"step": 1040
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.89,
|
653 |
+
"learning_rate": 3.9897227771832924e-05,
|
654 |
+
"loss": 0.0025,
|
655 |
+
"step": 1050
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.9,
|
659 |
+
"learning_rate": 3.971801486283665e-05,
|
660 |
+
"loss": 0.0044,
|
661 |
+
"step": 1060
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.91,
|
665 |
+
"learning_rate": 3.953763688742708e-05,
|
666 |
+
"loss": 0.0051,
|
667 |
+
"step": 1070
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.92,
|
671 |
+
"learning_rate": 3.9356108124182067e-05,
|
672 |
+
"loss": 0.0071,
|
673 |
+
"step": 1080
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.93,
|
677 |
+
"learning_rate": 3.9173442942774885e-05,
|
678 |
+
"loss": 0.0145,
|
679 |
+
"step": 1090
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.93,
|
683 |
+
"learning_rate": 3.898965580283681e-05,
|
684 |
+
"loss": 0.0371,
|
685 |
+
"step": 1100
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.94,
|
689 |
+
"learning_rate": 3.880476125281244e-05,
|
690 |
+
"loss": 0.0076,
|
691 |
+
"step": 1110
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.95,
|
695 |
+
"learning_rate": 3.861877392880808e-05,
|
696 |
+
"loss": 0.0035,
|
697 |
+
"step": 1120
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.96,
|
701 |
+
"learning_rate": 3.843170855343317e-05,
|
702 |
+
"loss": 0.008,
|
703 |
+
"step": 1130
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.97,
|
707 |
+
"learning_rate": 3.8243579934634846e-05,
|
708 |
+
"loss": 0.0089,
|
709 |
+
"step": 1140
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.98,
|
713 |
+
"learning_rate": 3.805440296452574e-05,
|
714 |
+
"loss": 0.0034,
|
715 |
+
"step": 1150
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.99,
|
719 |
+
"learning_rate": 3.786419261820514e-05,
|
720 |
+
"loss": 0.0019,
|
721 |
+
"step": 1160
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.99,
|
725 |
+
"learning_rate": 3.7672963952573614e-05,
|
726 |
+
"loss": 0.0164,
|
727 |
+
"step": 1170
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 1.0,
|
731 |
+
"learning_rate": 3.748073210514102e-05,
|
732 |
+
"loss": 0.0012,
|
733 |
+
"step": 1180
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 1.01,
|
737 |
+
"learning_rate": 3.728751229282836e-05,
|
738 |
+
"loss": 0.0072,
|
739 |
+
"step": 1190
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 1.02,
|
743 |
+
"learning_rate": 3.70933198107631e-05,
|
744 |
+
"loss": 0.0041,
|
745 |
+
"step": 1200
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 1.03,
|
749 |
+
"learning_rate": 3.689817003106852e-05,
|
750 |
+
"loss": 0.0021,
|
751 |
+
"step": 1210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.04,
|
755 |
+
"learning_rate": 3.670207840164678e-05,
|
756 |
+
"loss": 0.0024,
|
757 |
+
"step": 1220
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 1.05,
|
761 |
+
"learning_rate": 3.650506044495615e-05,
|
762 |
+
"loss": 0.0026,
|
763 |
+
"step": 1230
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.05,
|
767 |
+
"learning_rate": 3.630713175678222e-05,
|
768 |
+
"loss": 0.005,
|
769 |
+
"step": 1240
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 1.06,
|
773 |
+
"learning_rate": 3.610830800500335e-05,
|
774 |
+
"loss": 0.0069,
|
775 |
+
"step": 1250
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.07,
|
779 |
+
"learning_rate": 3.590860492835046e-05,
|
780 |
+
"loss": 0.0081,
|
781 |
+
"step": 1260
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.08,
|
785 |
+
"learning_rate": 3.5708038335161134e-05,
|
786 |
+
"loss": 0.0107,
|
787 |
+
"step": 1270
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 1.09,
|
791 |
+
"learning_rate": 3.550662410212819e-05,
|
792 |
+
"loss": 0.0074,
|
793 |
+
"step": 1280
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.1,
|
797 |
+
"learning_rate": 3.5304378173043e-05,
|
798 |
+
"loss": 0.0048,
|
799 |
+
"step": 1290
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 1.1,
|
803 |
+
"learning_rate": 3.5101316557533294e-05,
|
804 |
+
"loss": 0.0006,
|
805 |
+
"step": 1300
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.11,
|
809 |
+
"learning_rate": 3.489745532979593e-05,
|
810 |
+
"loss": 0.0076,
|
811 |
+
"step": 1310
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.12,
|
815 |
+
"learning_rate": 3.469281062732442e-05,
|
816 |
+
"loss": 0.0002,
|
817 |
+
"step": 1320
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.13,
|
821 |
+
"learning_rate": 3.448739864963154e-05,
|
822 |
+
"loss": 0.0073,
|
823 |
+
"step": 1330
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 1.14,
|
827 |
+
"learning_rate": 3.4281235656966915e-05,
|
828 |
+
"loss": 0.0008,
|
829 |
+
"step": 1340
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 1.15,
|
833 |
+
"learning_rate": 3.4074337969029965e-05,
|
834 |
+
"loss": 0.001,
|
835 |
+
"step": 1350
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.16,
|
839 |
+
"learning_rate": 3.386672196367799e-05,
|
840 |
+
"loss": 0.0047,
|
841 |
+
"step": 1360
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.16,
|
845 |
+
"learning_rate": 3.365840407562974e-05,
|
846 |
+
"loss": 0.0131,
|
847 |
+
"step": 1370
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.17,
|
851 |
+
"learning_rate": 3.3449400795164416e-05,
|
852 |
+
"loss": 0.001,
|
853 |
+
"step": 1380
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 1.18,
|
857 |
+
"learning_rate": 3.323972866681637e-05,
|
858 |
+
"loss": 0.0058,
|
859 |
+
"step": 1390
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.19,
|
863 |
+
"learning_rate": 3.3029404288065426e-05,
|
864 |
+
"loss": 0.0047,
|
865 |
+
"step": 1400
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 1.2,
|
869 |
+
"learning_rate": 3.2818444308023e-05,
|
870 |
+
"loss": 0.0029,
|
871 |
+
"step": 1410
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.21,
|
875 |
+
"learning_rate": 3.2606865426114234e-05,
|
876 |
+
"loss": 0.0073,
|
877 |
+
"step": 1420
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.21,
|
881 |
+
"learning_rate": 3.239468439075604e-05,
|
882 |
+
"loss": 0.0006,
|
883 |
+
"step": 1430
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.22,
|
887 |
+
"learning_rate": 3.2181917998031326e-05,
|
888 |
+
"loss": 0.0028,
|
889 |
+
"step": 1440
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 1.23,
|
893 |
+
"learning_rate": 3.196858309035941e-05,
|
894 |
+
"loss": 0.0003,
|
895 |
+
"step": 1450
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 1.24,
|
899 |
+
"learning_rate": 3.175469655516284e-05,
|
900 |
+
"loss": 0.0007,
|
901 |
+
"step": 1460
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.25,
|
905 |
+
"learning_rate": 3.154027532353052e-05,
|
906 |
+
"loss": 0.0037,
|
907 |
+
"step": 1470
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 1.26,
|
911 |
+
"learning_rate": 3.132533636887753e-05,
|
912 |
+
"loss": 0.0065,
|
913 |
+
"step": 1480
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 1.27,
|
917 |
+
"learning_rate": 3.1109896705601485e-05,
|
918 |
+
"loss": 0.0092,
|
919 |
+
"step": 1490
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.27,
|
923 |
+
"learning_rate": 3.0893973387735687e-05,
|
924 |
+
"loss": 0.0001,
|
925 |
+
"step": 1500
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.27,
|
929 |
+
"eval_loss": 0.010954583063721657,
|
930 |
+
"eval_runtime": 88.0029,
|
931 |
+
"eval_samples_per_second": 22.533,
|
932 |
+
"eval_steps_per_second": 2.818,
|
933 |
+
"step": 1500
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.28,
|
937 |
+
"learning_rate": 3.067758350759917e-05,
|
938 |
+
"loss": 0.0002,
|
939 |
+
"step": 1510
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.29,
|
943 |
+
"learning_rate": 3.046074419444366e-05,
|
944 |
+
"loss": 0.0004,
|
945 |
+
"step": 1520
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.3,
|
949 |
+
"learning_rate": 3.0243472613097656e-05,
|
950 |
+
"loss": 0.001,
|
951 |
+
"step": 1530
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.31,
|
955 |
+
"learning_rate": 3.002578596260765e-05,
|
956 |
+
"loss": 0.0001,
|
957 |
+
"step": 1540
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.32,
|
961 |
+
"learning_rate": 2.980770147487668e-05,
|
962 |
+
"loss": 0.0086,
|
963 |
+
"step": 1550
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 1.33,
|
967 |
+
"learning_rate": 2.958923641330028e-05,
|
968 |
+
"loss": 0.0021,
|
969 |
+
"step": 1560
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 1.33,
|
973 |
+
"learning_rate": 2.9370408071399898e-05,
|
974 |
+
"loss": 0.0001,
|
975 |
+
"step": 1570
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.34,
|
979 |
+
"learning_rate": 2.9151233771453956e-05,
|
980 |
+
"loss": 0.0076,
|
981 |
+
"step": 1580
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.35,
|
985 |
+
"learning_rate": 2.8931730863126666e-05,
|
986 |
+
"loss": 0.0001,
|
987 |
+
"step": 1590
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 1.36,
|
991 |
+
"learning_rate": 2.871191672209459e-05,
|
992 |
+
"loss": 0.0001,
|
993 |
+
"step": 1600
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.37,
|
997 |
+
"learning_rate": 2.8491808748671255e-05,
|
998 |
+
"loss": 0.0001,
|
999 |
+
"step": 1610
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.38,
|
1003 |
+
"learning_rate": 2.8271424366429706e-05,
|
1004 |
+
"loss": 0.0115,
|
1005 |
+
"step": 1620
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 1.38,
|
1009 |
+
"learning_rate": 2.8050781020823296e-05,
|
1010 |
+
"loss": 0.0001,
|
1011 |
+
"step": 1630
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.39,
|
1015 |
+
"learning_rate": 2.7829896177804716e-05,
|
1016 |
+
"loss": 0.0003,
|
1017 |
+
"step": 1640
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.4,
|
1021 |
+
"learning_rate": 2.760878732244339e-05,
|
1022 |
+
"loss": 0.0003,
|
1023 |
+
"step": 1650
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.41,
|
1027 |
+
"learning_rate": 2.7387471957541405e-05,
|
1028 |
+
"loss": 0.0024,
|
1029 |
+
"step": 1660
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.42,
|
1033 |
+
"learning_rate": 2.7165967602247964e-05,
|
1034 |
+
"loss": 0.0005,
|
1035 |
+
"step": 1670
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.43,
|
1039 |
+
"learning_rate": 2.694429179067261e-05,
|
1040 |
+
"loss": 0.0018,
|
1041 |
+
"step": 1680
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.44,
|
1045 |
+
"learning_rate": 2.6744651468034758e-05,
|
1046 |
+
"loss": 0.002,
|
1047 |
+
"step": 1690
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.44,
|
1051 |
+
"learning_rate": 2.6522698243485527e-05,
|
1052 |
+
"loss": 0.0001,
|
1053 |
+
"step": 1700
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.45,
|
1057 |
+
"learning_rate": 2.6300624483347926e-05,
|
1058 |
+
"loss": 0.0058,
|
1059 |
+
"step": 1710
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.46,
|
1063 |
+
"learning_rate": 2.607844776680513e-05,
|
1064 |
+
"loss": 0.0001,
|
1065 |
+
"step": 1720
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.47,
|
1069 |
+
"learning_rate": 2.585618568119027e-05,
|
1070 |
+
"loss": 0.0001,
|
1071 |
+
"step": 1730
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.48,
|
1075 |
+
"learning_rate": 2.56338558205942e-05,
|
1076 |
+
"loss": 0.0008,
|
1077 |
+
"step": 1740
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.49,
|
1081 |
+
"learning_rate": 2.5411475784472805e-05,
|
1082 |
+
"loss": 0.0002,
|
1083 |
+
"step": 1750
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.5,
|
1087 |
+
"learning_rate": 2.5189063176253825e-05,
|
1088 |
+
"loss": 0.0001,
|
1089 |
+
"step": 1760
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.5,
|
1093 |
+
"learning_rate": 2.496663560194338e-05,
|
1094 |
+
"loss": 0.0001,
|
1095 |
+
"step": 1770
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.51,
|
1099 |
+
"learning_rate": 2.4744210668732295e-05,
|
1100 |
+
"loss": 0.0001,
|
1101 |
+
"step": 1780
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.52,
|
1105 |
+
"learning_rate": 2.452180598360232e-05,
|
1106 |
+
"loss": 0.0001,
|
1107 |
+
"step": 1790
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.53,
|
1111 |
+
"learning_rate": 2.429943915193239e-05,
|
1112 |
+
"loss": 0.0,
|
1113 |
+
"step": 1800
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.54,
|
1117 |
+
"learning_rate": 2.4077127776104984e-05,
|
1118 |
+
"loss": 0.0146,
|
1119 |
+
"step": 1810
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.55,
|
1123 |
+
"learning_rate": 2.3854889454112748e-05,
|
1124 |
+
"loss": 0.0017,
|
1125 |
+
"step": 1820
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.55,
|
1129 |
+
"learning_rate": 2.3632741778165442e-05,
|
1130 |
+
"loss": 0.0001,
|
1131 |
+
"step": 1830
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.56,
|
1135 |
+
"learning_rate": 2.3410702333297356e-05,
|
1136 |
+
"loss": 0.0001,
|
1137 |
+
"step": 1840
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.57,
|
1141 |
+
"learning_rate": 2.318878869597528e-05,
|
1142 |
+
"loss": 0.0001,
|
1143 |
+
"step": 1850
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.58,
|
1147 |
+
"learning_rate": 2.2967018432707213e-05,
|
1148 |
+
"loss": 0.0073,
|
1149 |
+
"step": 1860
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.59,
|
1153 |
+
"learning_rate": 2.2745409098651744e-05,
|
1154 |
+
"loss": 0.0001,
|
1155 |
+
"step": 1870
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.6,
|
1159 |
+
"learning_rate": 2.2523978236228442e-05,
|
1160 |
+
"loss": 0.0001,
|
1161 |
+
"step": 1880
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.61,
|
1165 |
+
"learning_rate": 2.2302743373729205e-05,
|
1166 |
+
"loss": 0.0,
|
1167 |
+
"step": 1890
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.61,
|
1171 |
+
"learning_rate": 2.2081722023930743e-05,
|
1172 |
+
"loss": 0.0136,
|
1173 |
+
"step": 1900
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.62,
|
1177 |
+
"learning_rate": 2.1860931682708248e-05,
|
1178 |
+
"loss": 0.0051,
|
1179 |
+
"step": 1910
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.63,
|
1183 |
+
"learning_rate": 2.164038982765047e-05,
|
1184 |
+
"loss": 0.0004,
|
1185 |
+
"step": 1920
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.64,
|
1189 |
+
"learning_rate": 2.1420113916676183e-05,
|
1190 |
+
"loss": 0.0002,
|
1191 |
+
"step": 1930
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.65,
|
1195 |
+
"learning_rate": 2.1200121386652246e-05,
|
1196 |
+
"loss": 0.0001,
|
1197 |
+
"step": 1940
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.66,
|
1201 |
+
"learning_rate": 2.0980429652013297e-05,
|
1202 |
+
"loss": 0.0001,
|
1203 |
+
"step": 1950
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.67,
|
1207 |
+
"learning_rate": 2.0761056103383258e-05,
|
1208 |
+
"loss": 0.0001,
|
1209 |
+
"step": 1960
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.67,
|
1213 |
+
"learning_rate": 2.0542018106198697e-05,
|
1214 |
+
"loss": 0.0,
|
1215 |
+
"step": 1970
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.68,
|
1219 |
+
"learning_rate": 2.0323332999334198e-05,
|
1220 |
+
"loss": 0.005,
|
1221 |
+
"step": 1980
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.69,
|
1225 |
+
"learning_rate": 2.010501809372981e-05,
|
1226 |
+
"loss": 0.0149,
|
1227 |
+
"step": 1990
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.7,
|
1231 |
+
"learning_rate": 1.988709067102076e-05,
|
1232 |
+
"loss": 0.0143,
|
1233 |
+
"step": 2000
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.7,
|
1237 |
+
"eval_loss": 0.013543435372412205,
|
1238 |
+
"eval_runtime": 87.9904,
|
1239 |
+
"eval_samples_per_second": 22.537,
|
1240 |
+
"eval_steps_per_second": 2.818,
|
1241 |
+
"step": 2000
|
1242 |
+
}
|
1243 |
+
],
|
1244 |
+
"logging_steps": 10,
|
1245 |
+
"max_steps": 3531,
|
1246 |
+
"num_train_epochs": 3,
|
1247 |
+
"save_steps": 1000,
|
1248 |
+
"total_flos": 3.0084561090831974e+17,
|
1249 |
+
"trial_name": null,
|
1250 |
+
"trial_params": null
|
1251 |
+
}
|
LLM-Detector-V1-4w/checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
|
3 |
+
size 4664
|
LLM-Detector-V1-4w/checkpoint-3000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../Baichuan2-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.0
|
LLM-Detector-V1-4w/checkpoint-3000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../Baichuan2-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"W_pack"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V1-4w/checkpoint-3000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95683a3f84e8898c5638dc27af4722d83e15011e94d2d5b3dc5e5df5fb5f2957
|
3 |
+
size 16800430
|
LLM-Detector-V1-4w/checkpoint-3000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:382ed77666dc683727826a32b567726fa61aa8ce9683d06554f029848bbbbbe2
|
3 |
+
size 33608634
|
LLM-Detector-V1-4w/checkpoint-3000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:940027b051c66fe81320f03ac39a79253b4b99e23f81f20a7b419a3e9c536ca7
|
3 |
+
size 14244
|
LLM-Detector-V1-4w/checkpoint-3000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d39fa5eb0d60aa11f89119712f921058fcd340118e8e922310dd30bb99e28ee
|
3 |
+
size 1064
|
LLM-Detector-V1-4w/checkpoint-3000/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
LLM-Detector-V1-4w/checkpoint-3000/tokenization_baichuan.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {},
|
38 |
+
"tokenizer_file": {},
|
39 |
+
}
|
40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
41 |
+
|
42 |
+
|
43 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
44 |
+
"""
|
45 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
vocab_file (`str`):
|
49 |
+
Path to the vocabulary file.
|
50 |
+
"""
|
51 |
+
|
52 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
53 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
54 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
55 |
+
model_input_names = ["input_ids", "attention_mask"]
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_file,
|
60 |
+
unk_token="<unk>",
|
61 |
+
bos_token="<s>",
|
62 |
+
eos_token="</s>",
|
63 |
+
pad_token=None,
|
64 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
+
add_bos_token=True,
|
66 |
+
add_eos_token=False,
|
67 |
+
clean_up_tokenization_spaces=False,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
71 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
72 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
73 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
74 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
75 |
+
super().__init__(
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
add_bos_token=add_bos_token,
|
81 |
+
add_eos_token=add_eos_token,
|
82 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
83 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.add_bos_token = add_bos_token
|
88 |
+
self.add_eos_token = add_eos_token
|
89 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
90 |
+
self.sp_model.Load(vocab_file)
|
91 |
+
|
92 |
+
def __getstate__(self):
|
93 |
+
state = self.__dict__.copy()
|
94 |
+
state["sp_model"] = None
|
95 |
+
return state
|
96 |
+
|
97 |
+
def __setstate__(self, d):
|
98 |
+
self.__dict__ = d
|
99 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
100 |
+
self.sp_model.Load(self.vocab_file)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
"""Returns vocab size"""
|
105 |
+
return self.sp_model.get_piece_size()
|
106 |
+
|
107 |
+
def get_vocab(self):
|
108 |
+
"""Returns vocab as a dict"""
|
109 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
110 |
+
vocab.update(self.added_tokens_encoder)
|
111 |
+
return vocab
|
112 |
+
|
113 |
+
def _tokenize(self, text):
|
114 |
+
"""Returns a tokenized string."""
|
115 |
+
return self.sp_model.encode(text, out_type=str)
|
116 |
+
|
117 |
+
def _convert_token_to_id(self, token):
|
118 |
+
"""Converts a token (str) in an id using the vocab."""
|
119 |
+
return self.sp_model.piece_to_id(token)
|
120 |
+
|
121 |
+
def _convert_id_to_token(self, index):
|
122 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
123 |
+
token = self.sp_model.IdToPiece(index)
|
124 |
+
return token
|
125 |
+
|
126 |
+
def convert_tokens_to_string(self, tokens):
|
127 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
128 |
+
current_sub_tokens = []
|
129 |
+
out_string = ""
|
130 |
+
prev_is_special = False
|
131 |
+
for i, token in enumerate(tokens):
|
132 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
133 |
+
if token in self.all_special_tokens:
|
134 |
+
if not prev_is_special and i != 0:
|
135 |
+
out_string += " "
|
136 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
137 |
+
prev_is_special = True
|
138 |
+
current_sub_tokens = []
|
139 |
+
else:
|
140 |
+
current_sub_tokens.append(token)
|
141 |
+
prev_is_special = False
|
142 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
143 |
+
return out_string
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, "wb") as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
174 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
175 |
+
|
176 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
177 |
+
|
178 |
+
if token_ids_1 is not None:
|
179 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
180 |
+
|
181 |
+
return output
|
182 |
+
|
183 |
+
def get_special_tokens_mask(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
188 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
token_ids_0 (`List[int]`):
|
192 |
+
List of IDs.
|
193 |
+
token_ids_1 (`List[int]`, *optional*):
|
194 |
+
Optional second list of IDs for sequence pairs.
|
195 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
196 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
200 |
+
"""
|
201 |
+
if already_has_special_tokens:
|
202 |
+
return super().get_special_tokens_mask(
|
203 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
204 |
+
)
|
205 |
+
|
206 |
+
bos_token_id = [1] if self.add_bos_token else []
|
207 |
+
eos_token_id = [1] if self.add_eos_token else []
|
208 |
+
|
209 |
+
if token_ids_1 is None:
|
210 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
211 |
+
return (
|
212 |
+
bos_token_id
|
213 |
+
+ ([0] * len(token_ids_0))
|
214 |
+
+ eos_token_id
|
215 |
+
+ bos_token_id
|
216 |
+
+ ([0] * len(token_ids_1))
|
217 |
+
+ eos_token_id
|
218 |
+
)
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
225 |
+
sequence pair mask has the following format:
|
226 |
+
|
227 |
+
```
|
228 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
229 |
+
| first sequence | second sequence |
|
230 |
+
```
|
231 |
+
|
232 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of ids.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
242 |
+
"""
|
243 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
244 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
245 |
+
|
246 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
247 |
+
|
248 |
+
if token_ids_1 is not None:
|
249 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
250 |
+
|
251 |
+
return output
|
LLM-Detector-V1-4w/checkpoint-3000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
LLM-Detector-V1-4w/checkpoint-3000/tokenizer_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"split_special_tokens": false,
|
39 |
+
"tokenizer_class": "BaichuanTokenizer",
|
40 |
+
"unk_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<unk>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": true
|
47 |
+
},
|
48 |
+
"use_fast": false
|
49 |
+
}
|
LLM-Detector-V1-4w/checkpoint-3000/trainer_state.json
ADDED
@@ -0,0 +1,1867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.548853016142736,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999919851200522e-05,
|
14 |
+
"loss": 9.9461,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9996428002198536e-05,
|
20 |
+
"loss": 6.4908,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 4.9992242747551964e-05,
|
26 |
+
"loss": 3.708,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.99857130295276e-05,
|
32 |
+
"loss": 0.8908,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04,
|
37 |
+
"learning_rate": 4.997720546222574e-05,
|
38 |
+
"loss": 0.2454,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.05,
|
43 |
+
"learning_rate": 4.996672071909866e-05,
|
44 |
+
"loss": 0.1348,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"learning_rate": 4.995425963011034e-05,
|
50 |
+
"loss": 0.0487,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"learning_rate": 4.993982318167074e-05,
|
56 |
+
"loss": 0.0282,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 4.992341251655768e-05,
|
62 |
+
"loss": 0.0455,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.08,
|
67 |
+
"learning_rate": 4.9905028933826435e-05,
|
68 |
+
"loss": 0.0472,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.09,
|
73 |
+
"learning_rate": 4.988467388870688e-05,
|
74 |
+
"loss": 0.0526,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.1,
|
79 |
+
"learning_rate": 4.986234899248826e-05,
|
80 |
+
"loss": 0.0679,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.11,
|
85 |
+
"learning_rate": 4.983805601239172e-05,
|
86 |
+
"loss": 0.0314,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.12,
|
91 |
+
"learning_rate": 4.981179687143034e-05,
|
92 |
+
"loss": 0.0136,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.13,
|
97 |
+
"learning_rate": 4.978357364825695e-05,
|
98 |
+
"loss": 0.0409,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.14,
|
103 |
+
"learning_rate": 4.975338857699956e-05,
|
104 |
+
"loss": 0.0284,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.14,
|
109 |
+
"learning_rate": 4.972124404708454e-05,
|
110 |
+
"loss": 0.0364,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.15,
|
115 |
+
"learning_rate": 4.968714260304743e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.16,
|
121 |
+
"learning_rate": 4.965108694433159e-05,
|
122 |
+
"loss": 0.0174,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.17,
|
127 |
+
"learning_rate": 4.961307992507443e-05,
|
128 |
+
"loss": 0.0244,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.18,
|
133 |
+
"learning_rate": 4.957312455388152e-05,
|
134 |
+
"loss": 0.0387,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.19,
|
139 |
+
"learning_rate": 4.953122399358845e-05,
|
140 |
+
"loss": 0.0264,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.2,
|
145 |
+
"learning_rate": 4.948738156101042e-05,
|
146 |
+
"loss": 0.0291,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.2,
|
151 |
+
"learning_rate": 4.9441600726679694e-05,
|
152 |
+
"loss": 0.0214,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.21,
|
157 |
+
"learning_rate": 4.939388511457092e-05,
|
158 |
+
"loss": 0.0116,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.22,
|
163 |
+
"learning_rate": 4.934423850181419e-05,
|
164 |
+
"loss": 0.0191,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.23,
|
169 |
+
"learning_rate": 4.9292664818396117e-05,
|
170 |
+
"loss": 0.0064,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.24,
|
175 |
+
"learning_rate": 4.9239168146848666e-05,
|
176 |
+
"loss": 0.0184,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.25,
|
181 |
+
"learning_rate": 4.9183752721926036e-05,
|
182 |
+
"loss": 0.0026,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.25,
|
187 |
+
"learning_rate": 4.912642293026942e-05,
|
188 |
+
"loss": 0.0223,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.26,
|
193 |
+
"learning_rate": 4.906718331005979e-05,
|
194 |
+
"loss": 0.0405,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.27,
|
199 |
+
"learning_rate": 4.900603855065861e-05,
|
200 |
+
"loss": 0.0461,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.28,
|
205 |
+
"learning_rate": 4.894299349223665e-05,
|
206 |
+
"loss": 0.0199,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.29,
|
211 |
+
"learning_rate": 4.8878053125390875e-05,
|
212 |
+
"loss": 0.0193,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.3,
|
217 |
+
"learning_rate": 4.881122259074935e-05,
|
218 |
+
"loss": 0.004,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.31,
|
223 |
+
"learning_rate": 4.874250717856433e-05,
|
224 |
+
"loss": 0.0018,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.31,
|
229 |
+
"learning_rate": 4.867191232829348e-05,
|
230 |
+
"loss": 0.0021,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.32,
|
235 |
+
"learning_rate": 4.8599443628169295e-05,
|
236 |
+
"loss": 0.018,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.33,
|
241 |
+
"learning_rate": 4.8525106814756754e-05,
|
242 |
+
"loss": 0.0261,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.34,
|
247 |
+
"learning_rate": 4.84489077724992e-05,
|
248 |
+
"loss": 0.016,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.35,
|
253 |
+
"learning_rate": 4.8370852533252536e-05,
|
254 |
+
"loss": 0.0402,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.36,
|
259 |
+
"learning_rate": 4.8290947275807755e-05,
|
260 |
+
"loss": 0.0038,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.37,
|
265 |
+
"learning_rate": 4.8209198325401815e-05,
|
266 |
+
"loss": 0.008,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.37,
|
271 |
+
"learning_rate": 4.8125612153216976e-05,
|
272 |
+
"loss": 0.0296,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.38,
|
277 |
+
"learning_rate": 4.804019537586849e-05,
|
278 |
+
"loss": 0.0012,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.39,
|
283 |
+
"learning_rate": 4.7952954754880886e-05,
|
284 |
+
"loss": 0.0142,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.4,
|
289 |
+
"learning_rate": 4.7863897196152704e-05,
|
290 |
+
"loss": 0.0163,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.41,
|
295 |
+
"learning_rate": 4.7773029749409836e-05,
|
296 |
+
"loss": 0.0021,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.42,
|
301 |
+
"learning_rate": 4.76803596076475e-05,
|
302 |
+
"loss": 0.0355,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.42,
|
307 |
+
"learning_rate": 4.758589410656078e-05,
|
308 |
+
"loss": 0.0199,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.42,
|
313 |
+
"eval_loss": 0.010466881096363068,
|
314 |
+
"eval_runtime": 88.037,
|
315 |
+
"eval_samples_per_second": 22.525,
|
316 |
+
"eval_steps_per_second": 2.817,
|
317 |
+
"step": 500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"learning_rate": 4.748964072396403e-05,
|
322 |
+
"loss": 0.0341,
|
323 |
+
"step": 510
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.44,
|
327 |
+
"learning_rate": 4.7391607079198876e-05,
|
328 |
+
"loss": 0.0137,
|
329 |
+
"step": 520
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.45,
|
333 |
+
"learning_rate": 4.7291800932531064e-05,
|
334 |
+
"loss": 0.0138,
|
335 |
+
"step": 530
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.46,
|
339 |
+
"learning_rate": 4.719023018453623e-05,
|
340 |
+
"loss": 0.0063,
|
341 |
+
"step": 540
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.47,
|
345 |
+
"learning_rate": 4.708690287547441e-05,
|
346 |
+
"loss": 0.0376,
|
347 |
+
"step": 550
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.48,
|
351 |
+
"learning_rate": 4.698182718465368e-05,
|
352 |
+
"loss": 0.006,
|
353 |
+
"step": 560
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.48,
|
357 |
+
"learning_rate": 4.687501142978258e-05,
|
358 |
+
"loss": 0.0371,
|
359 |
+
"step": 570
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.49,
|
363 |
+
"learning_rate": 4.6766464066311765e-05,
|
364 |
+
"loss": 0.0322,
|
365 |
+
"step": 580
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.5,
|
369 |
+
"learning_rate": 4.665619368676466e-05,
|
370 |
+
"loss": 0.0086,
|
371 |
+
"step": 590
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.51,
|
375 |
+
"learning_rate": 4.6544209020057285e-05,
|
376 |
+
"loss": 0.002,
|
377 |
+
"step": 600
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.52,
|
381 |
+
"learning_rate": 4.643051893080725e-05,
|
382 |
+
"loss": 0.0147,
|
383 |
+
"step": 610
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.53,
|
387 |
+
"learning_rate": 4.631513241863209e-05,
|
388 |
+
"loss": 0.0038,
|
389 |
+
"step": 620
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.54,
|
393 |
+
"learning_rate": 4.619805861743683e-05,
|
394 |
+
"loss": 0.0187,
|
395 |
+
"step": 630
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.54,
|
399 |
+
"learning_rate": 4.607930679469096e-05,
|
400 |
+
"loss": 0.0063,
|
401 |
+
"step": 640
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.55,
|
405 |
+
"learning_rate": 4.595888635069481e-05,
|
406 |
+
"loss": 0.0109,
|
407 |
+
"step": 650
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.56,
|
411 |
+
"learning_rate": 4.5836806817835475e-05,
|
412 |
+
"loss": 0.005,
|
413 |
+
"step": 660
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.57,
|
417 |
+
"learning_rate": 4.57130778598322e-05,
|
418 |
+
"loss": 0.0167,
|
419 |
+
"step": 670
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.58,
|
423 |
+
"learning_rate": 4.5587709270971425e-05,
|
424 |
+
"loss": 0.0143,
|
425 |
+
"step": 680
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.59,
|
429 |
+
"learning_rate": 4.546071097533145e-05,
|
430 |
+
"loss": 0.0015,
|
431 |
+
"step": 690
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.59,
|
435 |
+
"learning_rate": 4.533209302599691e-05,
|
436 |
+
"loss": 0.0003,
|
437 |
+
"step": 700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.6,
|
441 |
+
"learning_rate": 4.520186560426292e-05,
|
442 |
+
"loss": 0.006,
|
443 |
+
"step": 710
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.61,
|
447 |
+
"learning_rate": 4.507003901882915e-05,
|
448 |
+
"loss": 0.0093,
|
449 |
+
"step": 720
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.62,
|
453 |
+
"learning_rate": 4.493662370498383e-05,
|
454 |
+
"loss": 0.0046,
|
455 |
+
"step": 730
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.63,
|
459 |
+
"learning_rate": 4.4801630223777665e-05,
|
460 |
+
"loss": 0.0147,
|
461 |
+
"step": 740
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.64,
|
465 |
+
"learning_rate": 4.466506926118782e-05,
|
466 |
+
"loss": 0.0102,
|
467 |
+
"step": 750
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.65,
|
471 |
+
"learning_rate": 4.4526951627272074e-05,
|
472 |
+
"loss": 0.017,
|
473 |
+
"step": 760
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.65,
|
477 |
+
"learning_rate": 4.438728825531305e-05,
|
478 |
+
"loss": 0.0033,
|
479 |
+
"step": 770
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.66,
|
483 |
+
"learning_rate": 4.4246090200952816e-05,
|
484 |
+
"loss": 0.0061,
|
485 |
+
"step": 780
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.67,
|
489 |
+
"learning_rate": 4.410336864131762e-05,
|
490 |
+
"loss": 0.0032,
|
491 |
+
"step": 790
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.68,
|
495 |
+
"learning_rate": 4.395913487413324e-05,
|
496 |
+
"loss": 0.0043,
|
497 |
+
"step": 800
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.69,
|
501 |
+
"learning_rate": 4.3813400316830576e-05,
|
502 |
+
"loss": 0.0063,
|
503 |
+
"step": 810
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.7,
|
507 |
+
"learning_rate": 4.36661765056419e-05,
|
508 |
+
"loss": 0.0273,
|
509 |
+
"step": 820
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.71,
|
513 |
+
"learning_rate": 4.351747509468763e-05,
|
514 |
+
"loss": 0.0125,
|
515 |
+
"step": 830
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.71,
|
519 |
+
"learning_rate": 4.336730785505382e-05,
|
520 |
+
"loss": 0.0076,
|
521 |
+
"step": 840
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.72,
|
525 |
+
"learning_rate": 4.3215686673860384e-05,
|
526 |
+
"loss": 0.0127,
|
527 |
+
"step": 850
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.73,
|
531 |
+
"learning_rate": 4.306262355332006e-05,
|
532 |
+
"loss": 0.0161,
|
533 |
+
"step": 860
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.74,
|
537 |
+
"learning_rate": 4.290813060978839e-05,
|
538 |
+
"loss": 0.0169,
|
539 |
+
"step": 870
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.75,
|
543 |
+
"learning_rate": 4.2752220072804564e-05,
|
544 |
+
"loss": 0.0081,
|
545 |
+
"step": 880
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.76,
|
549 |
+
"learning_rate": 4.259490428412335e-05,
|
550 |
+
"loss": 0.0131,
|
551 |
+
"step": 890
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.76,
|
555 |
+
"learning_rate": 4.243619569673814e-05,
|
556 |
+
"loss": 0.0205,
|
557 |
+
"step": 900
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.77,
|
561 |
+
"learning_rate": 4.2276106873895143e-05,
|
562 |
+
"loss": 0.0026,
|
563 |
+
"step": 910
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.78,
|
567 |
+
"learning_rate": 4.2114650488098936e-05,
|
568 |
+
"loss": 0.018,
|
569 |
+
"step": 920
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.79,
|
573 |
+
"learning_rate": 4.19518393201093e-05,
|
574 |
+
"loss": 0.0083,
|
575 |
+
"step": 930
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.8,
|
579 |
+
"learning_rate": 4.178768625792949e-05,
|
580 |
+
"loss": 0.0291,
|
581 |
+
"step": 940
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.81,
|
585 |
+
"learning_rate": 4.162220429578605e-05,
|
586 |
+
"loss": 0.0226,
|
587 |
+
"step": 950
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.82,
|
591 |
+
"learning_rate": 4.145540653310018e-05,
|
592 |
+
"loss": 0.0042,
|
593 |
+
"step": 960
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.82,
|
597 |
+
"learning_rate": 4.128730617345084e-05,
|
598 |
+
"loss": 0.0078,
|
599 |
+
"step": 970
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.83,
|
603 |
+
"learning_rate": 4.111791652352952e-05,
|
604 |
+
"loss": 0.0084,
|
605 |
+
"step": 980
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.84,
|
609 |
+
"learning_rate": 4.094725099208688e-05,
|
610 |
+
"loss": 0.0044,
|
611 |
+
"step": 990
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.85,
|
615 |
+
"learning_rate": 4.077532308887141e-05,
|
616 |
+
"loss": 0.0011,
|
617 |
+
"step": 1000
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.85,
|
621 |
+
"eval_loss": 0.01175768580287695,
|
622 |
+
"eval_runtime": 88.0904,
|
623 |
+
"eval_samples_per_second": 22.511,
|
624 |
+
"eval_steps_per_second": 2.815,
|
625 |
+
"step": 1000
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.86,
|
629 |
+
"learning_rate": 4.060214642355989e-05,
|
630 |
+
"loss": 0.0011,
|
631 |
+
"step": 1010
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 0.87,
|
635 |
+
"learning_rate": 4.042773470468016e-05,
|
636 |
+
"loss": 0.021,
|
637 |
+
"step": 1020
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 0.88,
|
641 |
+
"learning_rate": 4.0252101738525916e-05,
|
642 |
+
"loss": 0.0424,
|
643 |
+
"step": 1030
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.88,
|
647 |
+
"learning_rate": 4.0075261428063806e-05,
|
648 |
+
"loss": 0.0194,
|
649 |
+
"step": 1040
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.89,
|
653 |
+
"learning_rate": 3.9897227771832924e-05,
|
654 |
+
"loss": 0.0025,
|
655 |
+
"step": 1050
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.9,
|
659 |
+
"learning_rate": 3.971801486283665e-05,
|
660 |
+
"loss": 0.0044,
|
661 |
+
"step": 1060
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.91,
|
665 |
+
"learning_rate": 3.953763688742708e-05,
|
666 |
+
"loss": 0.0051,
|
667 |
+
"step": 1070
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.92,
|
671 |
+
"learning_rate": 3.9356108124182067e-05,
|
672 |
+
"loss": 0.0071,
|
673 |
+
"step": 1080
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.93,
|
677 |
+
"learning_rate": 3.9173442942774885e-05,
|
678 |
+
"loss": 0.0145,
|
679 |
+
"step": 1090
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.93,
|
683 |
+
"learning_rate": 3.898965580283681e-05,
|
684 |
+
"loss": 0.0371,
|
685 |
+
"step": 1100
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.94,
|
689 |
+
"learning_rate": 3.880476125281244e-05,
|
690 |
+
"loss": 0.0076,
|
691 |
+
"step": 1110
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.95,
|
695 |
+
"learning_rate": 3.861877392880808e-05,
|
696 |
+
"loss": 0.0035,
|
697 |
+
"step": 1120
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.96,
|
701 |
+
"learning_rate": 3.843170855343317e-05,
|
702 |
+
"loss": 0.008,
|
703 |
+
"step": 1130
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.97,
|
707 |
+
"learning_rate": 3.8243579934634846e-05,
|
708 |
+
"loss": 0.0089,
|
709 |
+
"step": 1140
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.98,
|
713 |
+
"learning_rate": 3.805440296452574e-05,
|
714 |
+
"loss": 0.0034,
|
715 |
+
"step": 1150
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.99,
|
719 |
+
"learning_rate": 3.786419261820514e-05,
|
720 |
+
"loss": 0.0019,
|
721 |
+
"step": 1160
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.99,
|
725 |
+
"learning_rate": 3.7672963952573614e-05,
|
726 |
+
"loss": 0.0164,
|
727 |
+
"step": 1170
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 1.0,
|
731 |
+
"learning_rate": 3.748073210514102e-05,
|
732 |
+
"loss": 0.0012,
|
733 |
+
"step": 1180
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 1.01,
|
737 |
+
"learning_rate": 3.728751229282836e-05,
|
738 |
+
"loss": 0.0072,
|
739 |
+
"step": 1190
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 1.02,
|
743 |
+
"learning_rate": 3.70933198107631e-05,
|
744 |
+
"loss": 0.0041,
|
745 |
+
"step": 1200
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 1.03,
|
749 |
+
"learning_rate": 3.689817003106852e-05,
|
750 |
+
"loss": 0.0021,
|
751 |
+
"step": 1210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.04,
|
755 |
+
"learning_rate": 3.670207840164678e-05,
|
756 |
+
"loss": 0.0024,
|
757 |
+
"step": 1220
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 1.05,
|
761 |
+
"learning_rate": 3.650506044495615e-05,
|
762 |
+
"loss": 0.0026,
|
763 |
+
"step": 1230
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.05,
|
767 |
+
"learning_rate": 3.630713175678222e-05,
|
768 |
+
"loss": 0.005,
|
769 |
+
"step": 1240
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 1.06,
|
773 |
+
"learning_rate": 3.610830800500335e-05,
|
774 |
+
"loss": 0.0069,
|
775 |
+
"step": 1250
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.07,
|
779 |
+
"learning_rate": 3.590860492835046e-05,
|
780 |
+
"loss": 0.0081,
|
781 |
+
"step": 1260
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.08,
|
785 |
+
"learning_rate": 3.5708038335161134e-05,
|
786 |
+
"loss": 0.0107,
|
787 |
+
"step": 1270
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 1.09,
|
791 |
+
"learning_rate": 3.550662410212819e-05,
|
792 |
+
"loss": 0.0074,
|
793 |
+
"step": 1280
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.1,
|
797 |
+
"learning_rate": 3.5304378173043e-05,
|
798 |
+
"loss": 0.0048,
|
799 |
+
"step": 1290
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 1.1,
|
803 |
+
"learning_rate": 3.5101316557533294e-05,
|
804 |
+
"loss": 0.0006,
|
805 |
+
"step": 1300
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.11,
|
809 |
+
"learning_rate": 3.489745532979593e-05,
|
810 |
+
"loss": 0.0076,
|
811 |
+
"step": 1310
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.12,
|
815 |
+
"learning_rate": 3.469281062732442e-05,
|
816 |
+
"loss": 0.0002,
|
817 |
+
"step": 1320
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.13,
|
821 |
+
"learning_rate": 3.448739864963154e-05,
|
822 |
+
"loss": 0.0073,
|
823 |
+
"step": 1330
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 1.14,
|
827 |
+
"learning_rate": 3.4281235656966915e-05,
|
828 |
+
"loss": 0.0008,
|
829 |
+
"step": 1340
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 1.15,
|
833 |
+
"learning_rate": 3.4074337969029965e-05,
|
834 |
+
"loss": 0.001,
|
835 |
+
"step": 1350
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.16,
|
839 |
+
"learning_rate": 3.386672196367799e-05,
|
840 |
+
"loss": 0.0047,
|
841 |
+
"step": 1360
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.16,
|
845 |
+
"learning_rate": 3.365840407562974e-05,
|
846 |
+
"loss": 0.0131,
|
847 |
+
"step": 1370
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.17,
|
851 |
+
"learning_rate": 3.3449400795164416e-05,
|
852 |
+
"loss": 0.001,
|
853 |
+
"step": 1380
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 1.18,
|
857 |
+
"learning_rate": 3.323972866681637e-05,
|
858 |
+
"loss": 0.0058,
|
859 |
+
"step": 1390
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.19,
|
863 |
+
"learning_rate": 3.3029404288065426e-05,
|
864 |
+
"loss": 0.0047,
|
865 |
+
"step": 1400
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 1.2,
|
869 |
+
"learning_rate": 3.2818444308023e-05,
|
870 |
+
"loss": 0.0029,
|
871 |
+
"step": 1410
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.21,
|
875 |
+
"learning_rate": 3.2606865426114234e-05,
|
876 |
+
"loss": 0.0073,
|
877 |
+
"step": 1420
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.21,
|
881 |
+
"learning_rate": 3.239468439075604e-05,
|
882 |
+
"loss": 0.0006,
|
883 |
+
"step": 1430
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.22,
|
887 |
+
"learning_rate": 3.2181917998031326e-05,
|
888 |
+
"loss": 0.0028,
|
889 |
+
"step": 1440
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 1.23,
|
893 |
+
"learning_rate": 3.196858309035941e-05,
|
894 |
+
"loss": 0.0003,
|
895 |
+
"step": 1450
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 1.24,
|
899 |
+
"learning_rate": 3.175469655516284e-05,
|
900 |
+
"loss": 0.0007,
|
901 |
+
"step": 1460
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.25,
|
905 |
+
"learning_rate": 3.154027532353052e-05,
|
906 |
+
"loss": 0.0037,
|
907 |
+
"step": 1470
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 1.26,
|
911 |
+
"learning_rate": 3.132533636887753e-05,
|
912 |
+
"loss": 0.0065,
|
913 |
+
"step": 1480
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 1.27,
|
917 |
+
"learning_rate": 3.1109896705601485e-05,
|
918 |
+
"loss": 0.0092,
|
919 |
+
"step": 1490
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.27,
|
923 |
+
"learning_rate": 3.0893973387735687e-05,
|
924 |
+
"loss": 0.0001,
|
925 |
+
"step": 1500
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.27,
|
929 |
+
"eval_loss": 0.010954583063721657,
|
930 |
+
"eval_runtime": 88.0029,
|
931 |
+
"eval_samples_per_second": 22.533,
|
932 |
+
"eval_steps_per_second": 2.818,
|
933 |
+
"step": 1500
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.28,
|
937 |
+
"learning_rate": 3.067758350759917e-05,
|
938 |
+
"loss": 0.0002,
|
939 |
+
"step": 1510
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.29,
|
943 |
+
"learning_rate": 3.046074419444366e-05,
|
944 |
+
"loss": 0.0004,
|
945 |
+
"step": 1520
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.3,
|
949 |
+
"learning_rate": 3.0243472613097656e-05,
|
950 |
+
"loss": 0.001,
|
951 |
+
"step": 1530
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.31,
|
955 |
+
"learning_rate": 3.002578596260765e-05,
|
956 |
+
"loss": 0.0001,
|
957 |
+
"step": 1540
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.32,
|
961 |
+
"learning_rate": 2.980770147487668e-05,
|
962 |
+
"loss": 0.0086,
|
963 |
+
"step": 1550
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 1.33,
|
967 |
+
"learning_rate": 2.958923641330028e-05,
|
968 |
+
"loss": 0.0021,
|
969 |
+
"step": 1560
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 1.33,
|
973 |
+
"learning_rate": 2.9370408071399898e-05,
|
974 |
+
"loss": 0.0001,
|
975 |
+
"step": 1570
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.34,
|
979 |
+
"learning_rate": 2.9151233771453956e-05,
|
980 |
+
"loss": 0.0076,
|
981 |
+
"step": 1580
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.35,
|
985 |
+
"learning_rate": 2.8931730863126666e-05,
|
986 |
+
"loss": 0.0001,
|
987 |
+
"step": 1590
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 1.36,
|
991 |
+
"learning_rate": 2.871191672209459e-05,
|
992 |
+
"loss": 0.0001,
|
993 |
+
"step": 1600
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.37,
|
997 |
+
"learning_rate": 2.8491808748671255e-05,
|
998 |
+
"loss": 0.0001,
|
999 |
+
"step": 1610
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.38,
|
1003 |
+
"learning_rate": 2.8271424366429706e-05,
|
1004 |
+
"loss": 0.0115,
|
1005 |
+
"step": 1620
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 1.38,
|
1009 |
+
"learning_rate": 2.8050781020823296e-05,
|
1010 |
+
"loss": 0.0001,
|
1011 |
+
"step": 1630
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.39,
|
1015 |
+
"learning_rate": 2.7829896177804716e-05,
|
1016 |
+
"loss": 0.0003,
|
1017 |
+
"step": 1640
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.4,
|
1021 |
+
"learning_rate": 2.760878732244339e-05,
|
1022 |
+
"loss": 0.0003,
|
1023 |
+
"step": 1650
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.41,
|
1027 |
+
"learning_rate": 2.7387471957541405e-05,
|
1028 |
+
"loss": 0.0024,
|
1029 |
+
"step": 1660
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.42,
|
1033 |
+
"learning_rate": 2.7165967602247964e-05,
|
1034 |
+
"loss": 0.0005,
|
1035 |
+
"step": 1670
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.43,
|
1039 |
+
"learning_rate": 2.694429179067261e-05,
|
1040 |
+
"loss": 0.0018,
|
1041 |
+
"step": 1680
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.44,
|
1045 |
+
"learning_rate": 2.6744651468034758e-05,
|
1046 |
+
"loss": 0.002,
|
1047 |
+
"step": 1690
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.44,
|
1051 |
+
"learning_rate": 2.6522698243485527e-05,
|
1052 |
+
"loss": 0.0001,
|
1053 |
+
"step": 1700
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.45,
|
1057 |
+
"learning_rate": 2.6300624483347926e-05,
|
1058 |
+
"loss": 0.0058,
|
1059 |
+
"step": 1710
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.46,
|
1063 |
+
"learning_rate": 2.607844776680513e-05,
|
1064 |
+
"loss": 0.0001,
|
1065 |
+
"step": 1720
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.47,
|
1069 |
+
"learning_rate": 2.585618568119027e-05,
|
1070 |
+
"loss": 0.0001,
|
1071 |
+
"step": 1730
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.48,
|
1075 |
+
"learning_rate": 2.56338558205942e-05,
|
1076 |
+
"loss": 0.0008,
|
1077 |
+
"step": 1740
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.49,
|
1081 |
+
"learning_rate": 2.5411475784472805e-05,
|
1082 |
+
"loss": 0.0002,
|
1083 |
+
"step": 1750
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.5,
|
1087 |
+
"learning_rate": 2.5189063176253825e-05,
|
1088 |
+
"loss": 0.0001,
|
1089 |
+
"step": 1760
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.5,
|
1093 |
+
"learning_rate": 2.496663560194338e-05,
|
1094 |
+
"loss": 0.0001,
|
1095 |
+
"step": 1770
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.51,
|
1099 |
+
"learning_rate": 2.4744210668732295e-05,
|
1100 |
+
"loss": 0.0001,
|
1101 |
+
"step": 1780
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.52,
|
1105 |
+
"learning_rate": 2.452180598360232e-05,
|
1106 |
+
"loss": 0.0001,
|
1107 |
+
"step": 1790
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.53,
|
1111 |
+
"learning_rate": 2.429943915193239e-05,
|
1112 |
+
"loss": 0.0,
|
1113 |
+
"step": 1800
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.54,
|
1117 |
+
"learning_rate": 2.4077127776104984e-05,
|
1118 |
+
"loss": 0.0146,
|
1119 |
+
"step": 1810
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.55,
|
1123 |
+
"learning_rate": 2.3854889454112748e-05,
|
1124 |
+
"loss": 0.0017,
|
1125 |
+
"step": 1820
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.55,
|
1129 |
+
"learning_rate": 2.3632741778165442e-05,
|
1130 |
+
"loss": 0.0001,
|
1131 |
+
"step": 1830
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.56,
|
1135 |
+
"learning_rate": 2.3410702333297356e-05,
|
1136 |
+
"loss": 0.0001,
|
1137 |
+
"step": 1840
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.57,
|
1141 |
+
"learning_rate": 2.318878869597528e-05,
|
1142 |
+
"loss": 0.0001,
|
1143 |
+
"step": 1850
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.58,
|
1147 |
+
"learning_rate": 2.2967018432707213e-05,
|
1148 |
+
"loss": 0.0073,
|
1149 |
+
"step": 1860
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.59,
|
1153 |
+
"learning_rate": 2.2745409098651744e-05,
|
1154 |
+
"loss": 0.0001,
|
1155 |
+
"step": 1870
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.6,
|
1159 |
+
"learning_rate": 2.2523978236228442e-05,
|
1160 |
+
"loss": 0.0001,
|
1161 |
+
"step": 1880
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.61,
|
1165 |
+
"learning_rate": 2.2302743373729205e-05,
|
1166 |
+
"loss": 0.0,
|
1167 |
+
"step": 1890
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.61,
|
1171 |
+
"learning_rate": 2.2081722023930743e-05,
|
1172 |
+
"loss": 0.0136,
|
1173 |
+
"step": 1900
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.62,
|
1177 |
+
"learning_rate": 2.1860931682708248e-05,
|
1178 |
+
"loss": 0.0051,
|
1179 |
+
"step": 1910
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.63,
|
1183 |
+
"learning_rate": 2.164038982765047e-05,
|
1184 |
+
"loss": 0.0004,
|
1185 |
+
"step": 1920
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.64,
|
1189 |
+
"learning_rate": 2.1420113916676183e-05,
|
1190 |
+
"loss": 0.0002,
|
1191 |
+
"step": 1930
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.65,
|
1195 |
+
"learning_rate": 2.1200121386652246e-05,
|
1196 |
+
"loss": 0.0001,
|
1197 |
+
"step": 1940
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.66,
|
1201 |
+
"learning_rate": 2.0980429652013297e-05,
|
1202 |
+
"loss": 0.0001,
|
1203 |
+
"step": 1950
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.67,
|
1207 |
+
"learning_rate": 2.0761056103383258e-05,
|
1208 |
+
"loss": 0.0001,
|
1209 |
+
"step": 1960
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.67,
|
1213 |
+
"learning_rate": 2.0542018106198697e-05,
|
1214 |
+
"loss": 0.0,
|
1215 |
+
"step": 1970
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.68,
|
1219 |
+
"learning_rate": 2.0323332999334198e-05,
|
1220 |
+
"loss": 0.005,
|
1221 |
+
"step": 1980
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.69,
|
1225 |
+
"learning_rate": 2.010501809372981e-05,
|
1226 |
+
"loss": 0.0149,
|
1227 |
+
"step": 1990
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.7,
|
1231 |
+
"learning_rate": 1.988709067102076e-05,
|
1232 |
+
"loss": 0.0143,
|
1233 |
+
"step": 2000
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.7,
|
1237 |
+
"eval_loss": 0.013543435372412205,
|
1238 |
+
"eval_runtime": 87.9904,
|
1239 |
+
"eval_samples_per_second": 22.537,
|
1240 |
+
"eval_steps_per_second": 2.818,
|
1241 |
+
"step": 2000
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.71,
|
1245 |
+
"learning_rate": 1.966956798216943e-05,
|
1246 |
+
"loss": 0.0017,
|
1247 |
+
"step": 2010
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 1.72,
|
1251 |
+
"learning_rate": 1.945246724609978e-05,
|
1252 |
+
"loss": 0.0038,
|
1253 |
+
"step": 2020
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 1.72,
|
1257 |
+
"learning_rate": 1.9235805648334342e-05,
|
1258 |
+
"loss": 0.0003,
|
1259 |
+
"step": 2030
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 1.73,
|
1263 |
+
"learning_rate": 1.9019600339633798e-05,
|
1264 |
+
"loss": 0.0005,
|
1265 |
+
"step": 2040
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 1.74,
|
1269 |
+
"learning_rate": 1.8803868434639345e-05,
|
1270 |
+
"loss": 0.0005,
|
1271 |
+
"step": 2050
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 1.75,
|
1275 |
+
"learning_rate": 1.858862701051791e-05,
|
1276 |
+
"loss": 0.0009,
|
1277 |
+
"step": 2060
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.76,
|
1281 |
+
"learning_rate": 1.8373893105610356e-05,
|
1282 |
+
"loss": 0.0002,
|
1283 |
+
"step": 2070
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.77,
|
1287 |
+
"learning_rate": 1.815968371808273e-05,
|
1288 |
+
"loss": 0.0036,
|
1289 |
+
"step": 2080
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 1.78,
|
1293 |
+
"learning_rate": 1.7946015804580688e-05,
|
1294 |
+
"loss": 0.0138,
|
1295 |
+
"step": 2090
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.78,
|
1299 |
+
"learning_rate": 1.7732906278887225e-05,
|
1300 |
+
"loss": 0.0005,
|
1301 |
+
"step": 2100
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 1.79,
|
1305 |
+
"learning_rate": 1.7520372010583815e-05,
|
1306 |
+
"loss": 0.0001,
|
1307 |
+
"step": 2110
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 1.8,
|
1311 |
+
"learning_rate": 1.7308429823714995e-05,
|
1312 |
+
"loss": 0.0001,
|
1313 |
+
"step": 2120
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 1.81,
|
1317 |
+
"learning_rate": 1.709709649545662e-05,
|
1318 |
+
"loss": 0.0001,
|
1319 |
+
"step": 2130
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.82,
|
1323 |
+
"learning_rate": 1.688638875478777e-05,
|
1324 |
+
"loss": 0.0001,
|
1325 |
+
"step": 2140
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.83,
|
1329 |
+
"learning_rate": 1.66763232811665e-05,
|
1330 |
+
"loss": 0.0,
|
1331 |
+
"step": 2150
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 1.84,
|
1335 |
+
"learning_rate": 1.6466916703209535e-05,
|
1336 |
+
"loss": 0.012,
|
1337 |
+
"step": 2160
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.84,
|
1341 |
+
"learning_rate": 1.625818559737592e-05,
|
1342 |
+
"loss": 0.0,
|
1343 |
+
"step": 2170
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 1.85,
|
1347 |
+
"learning_rate": 1.605014648665486e-05,
|
1348 |
+
"loss": 0.0005,
|
1349 |
+
"step": 2180
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.86,
|
1353 |
+
"learning_rate": 1.584281583925779e-05,
|
1354 |
+
"loss": 0.0047,
|
1355 |
+
"step": 2190
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 1.87,
|
1359 |
+
"learning_rate": 1.5636210067314744e-05,
|
1360 |
+
"loss": 0.0126,
|
1361 |
+
"step": 2200
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.88,
|
1365 |
+
"learning_rate": 1.5430345525575186e-05,
|
1366 |
+
"loss": 0.0015,
|
1367 |
+
"step": 2210
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.89,
|
1371 |
+
"learning_rate": 1.5225238510113377e-05,
|
1372 |
+
"loss": 0.0018,
|
1373 |
+
"step": 2220
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 1.89,
|
1377 |
+
"learning_rate": 1.5020905257038403e-05,
|
1378 |
+
"loss": 0.0057,
|
1379 |
+
"step": 2230
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.9,
|
1383 |
+
"learning_rate": 1.481736194120894e-05,
|
1384 |
+
"loss": 0.0036,
|
1385 |
+
"step": 2240
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.91,
|
1389 |
+
"learning_rate": 1.4614624674952842e-05,
|
1390 |
+
"loss": 0.0006,
|
1391 |
+
"step": 2250
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.92,
|
1395 |
+
"learning_rate": 1.4412709506791725e-05,
|
1396 |
+
"loss": 0.0054,
|
1397 |
+
"step": 2260
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 1.93,
|
1401 |
+
"learning_rate": 1.4211632420170558e-05,
|
1402 |
+
"loss": 0.0039,
|
1403 |
+
"step": 2270
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.94,
|
1407 |
+
"learning_rate": 1.4011409332192472e-05,
|
1408 |
+
"loss": 0.0017,
|
1409 |
+
"step": 2280
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.95,
|
1413 |
+
"learning_rate": 1.3812056092358686e-05,
|
1414 |
+
"loss": 0.0181,
|
1415 |
+
"step": 2290
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 1.95,
|
1419 |
+
"learning_rate": 1.3613588481313977e-05,
|
1420 |
+
"loss": 0.0035,
|
1421 |
+
"step": 2300
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.96,
|
1425 |
+
"learning_rate": 1.3416022209597429e-05,
|
1426 |
+
"loss": 0.0001,
|
1427 |
+
"step": 2310
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 1.97,
|
1431 |
+
"learning_rate": 1.3219372916398826e-05,
|
1432 |
+
"loss": 0.0005,
|
1433 |
+
"step": 2320
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.98,
|
1437 |
+
"learning_rate": 1.302365616832063e-05,
|
1438 |
+
"loss": 0.0012,
|
1439 |
+
"step": 2330
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 1.99,
|
1443 |
+
"learning_rate": 1.2828887458145806e-05,
|
1444 |
+
"loss": 0.0052,
|
1445 |
+
"step": 2340
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 2.0,
|
1449 |
+
"learning_rate": 1.2635082203611375e-05,
|
1450 |
+
"loss": 0.0008,
|
1451 |
+
"step": 2350
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.01,
|
1455 |
+
"learning_rate": 1.2442255746187954e-05,
|
1456 |
+
"loss": 0.0002,
|
1457 |
+
"step": 2360
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 2.01,
|
1461 |
+
"learning_rate": 1.2250423349865387e-05,
|
1462 |
+
"loss": 0.0009,
|
1463 |
+
"step": 2370
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 2.02,
|
1467 |
+
"learning_rate": 1.2059600199944388e-05,
|
1468 |
+
"loss": 0.0002,
|
1469 |
+
"step": 2380
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 2.03,
|
1473 |
+
"learning_rate": 1.1869801401834564e-05,
|
1474 |
+
"loss": 0.0001,
|
1475 |
+
"step": 2390
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 2.04,
|
1479 |
+
"learning_rate": 1.1681041979858626e-05,
|
1480 |
+
"loss": 0.0001,
|
1481 |
+
"step": 2400
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 2.05,
|
1485 |
+
"learning_rate": 1.1493336876063071e-05,
|
1486 |
+
"loss": 0.0001,
|
1487 |
+
"step": 2410
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 2.06,
|
1491 |
+
"learning_rate": 1.1306700949035462e-05,
|
1492 |
+
"loss": 0.0,
|
1493 |
+
"step": 2420
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.06,
|
1497 |
+
"learning_rate": 1.1121148972728104e-05,
|
1498 |
+
"loss": 0.0001,
|
1499 |
+
"step": 2430
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 2.07,
|
1503 |
+
"learning_rate": 1.0936695635288674e-05,
|
1504 |
+
"loss": 0.0001,
|
1505 |
+
"step": 2440
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 2.08,
|
1509 |
+
"learning_rate": 1.0753355537897427e-05,
|
1510 |
+
"loss": 0.0001,
|
1511 |
+
"step": 2450
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 2.09,
|
1515 |
+
"learning_rate": 1.0571143193611444e-05,
|
1516 |
+
"loss": 0.0,
|
1517 |
+
"step": 2460
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 2.1,
|
1521 |
+
"learning_rate": 1.039007302621576e-05,
|
1522 |
+
"loss": 0.0001,
|
1523 |
+
"step": 2470
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 2.11,
|
1527 |
+
"learning_rate": 1.0210159369081568e-05,
|
1528 |
+
"loss": 0.0003,
|
1529 |
+
"step": 2480
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 2.12,
|
1533 |
+
"learning_rate": 1.0031416464031654e-05,
|
1534 |
+
"loss": 0.0,
|
1535 |
+
"step": 2490
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.12,
|
1539 |
+
"learning_rate": 9.853858460212962e-06,
|
1540 |
+
"loss": 0.0001,
|
1541 |
+
"step": 2500
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 2.12,
|
1545 |
+
"eval_loss": 0.012909023091197014,
|
1546 |
+
"eval_runtime": 87.9835,
|
1547 |
+
"eval_samples_per_second": 22.538,
|
1548 |
+
"eval_steps_per_second": 2.819,
|
1549 |
+
"step": 2500
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.13,
|
1553 |
+
"learning_rate": 9.677499412976632e-06,
|
1554 |
+
"loss": 0.0,
|
1555 |
+
"step": 2510
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 2.14,
|
1559 |
+
"learning_rate": 9.502353282765306e-06,
|
1560 |
+
"loss": 0.0001,
|
1561 |
+
"step": 2520
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 2.15,
|
1565 |
+
"learning_rate": 9.328433934008107e-06,
|
1566 |
+
"loss": 0.0002,
|
1567 |
+
"step": 2530
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 2.16,
|
1571 |
+
"learning_rate": 9.155755134023097e-06,
|
1572 |
+
"loss": 0.0,
|
1573 |
+
"step": 2540
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 2.17,
|
1577 |
+
"learning_rate": 8.984330551927475e-06,
|
1578 |
+
"loss": 0.0,
|
1579 |
+
"step": 2550
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 2.18,
|
1583 |
+
"learning_rate": 8.81417375755556e-06,
|
1584 |
+
"loss": 0.0002,
|
1585 |
+
"step": 2560
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 2.18,
|
1589 |
+
"learning_rate": 8.645298220384567e-06,
|
1590 |
+
"loss": 0.0001,
|
1591 |
+
"step": 2570
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.19,
|
1595 |
+
"learning_rate": 8.477717308468442e-06,
|
1596 |
+
"loss": 0.0008,
|
1597 |
+
"step": 2580
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 2.2,
|
1601 |
+
"learning_rate": 8.31144428737958e-06,
|
1602 |
+
"loss": 0.0,
|
1603 |
+
"step": 2590
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 2.21,
|
1607 |
+
"learning_rate": 8.146492319158805e-06,
|
1608 |
+
"loss": 0.0,
|
1609 |
+
"step": 2600
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 2.22,
|
1613 |
+
"learning_rate": 7.982874461273438e-06,
|
1614 |
+
"loss": 0.0001,
|
1615 |
+
"step": 2610
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 2.23,
|
1619 |
+
"learning_rate": 7.820603665583654e-06,
|
1620 |
+
"loss": 0.0002,
|
1621 |
+
"step": 2620
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 2.23,
|
1625 |
+
"learning_rate": 7.659692777317288e-06,
|
1626 |
+
"loss": 0.0001,
|
1627 |
+
"step": 2630
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 2.24,
|
1631 |
+
"learning_rate": 7.500154534052933e-06,
|
1632 |
+
"loss": 0.0001,
|
1633 |
+
"step": 2640
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.25,
|
1637 |
+
"learning_rate": 7.342001564711756e-06,
|
1638 |
+
"loss": 0.0001,
|
1639 |
+
"step": 2650
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 2.26,
|
1643 |
+
"learning_rate": 7.185246388557665e-06,
|
1644 |
+
"loss": 0.0,
|
1645 |
+
"step": 2660
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 2.27,
|
1649 |
+
"learning_rate": 7.0299014142064106e-06,
|
1650 |
+
"loss": 0.0,
|
1651 |
+
"step": 2670
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 2.28,
|
1655 |
+
"learning_rate": 6.875978938643277e-06,
|
1656 |
+
"loss": 0.0001,
|
1657 |
+
"step": 2680
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 2.29,
|
1661 |
+
"learning_rate": 6.723491146249647e-06,
|
1662 |
+
"loss": 0.0,
|
1663 |
+
"step": 2690
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 2.29,
|
1667 |
+
"learning_rate": 6.572450107838551e-06,
|
1668 |
+
"loss": 0.0001,
|
1669 |
+
"step": 2700
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 2.3,
|
1673 |
+
"learning_rate": 6.422867779699088e-06,
|
1674 |
+
"loss": 0.0002,
|
1675 |
+
"step": 2710
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.31,
|
1679 |
+
"learning_rate": 6.274756002650034e-06,
|
1680 |
+
"loss": 0.0001,
|
1681 |
+
"step": 2720
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 2.32,
|
1685 |
+
"learning_rate": 6.128126501102479e-06,
|
1686 |
+
"loss": 0.0001,
|
1687 |
+
"step": 2730
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 2.33,
|
1691 |
+
"learning_rate": 5.982990882131775e-06,
|
1692 |
+
"loss": 0.0001,
|
1693 |
+
"step": 2740
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 2.34,
|
1697 |
+
"learning_rate": 5.83936063455871e-06,
|
1698 |
+
"loss": 0.0001,
|
1699 |
+
"step": 2750
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 2.34,
|
1703 |
+
"learning_rate": 5.697247128040037e-06,
|
1704 |
+
"loss": 0.0,
|
1705 |
+
"step": 2760
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 2.35,
|
1709 |
+
"learning_rate": 5.556661612168537e-06,
|
1710 |
+
"loss": 0.0003,
|
1711 |
+
"step": 2770
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 2.36,
|
1715 |
+
"learning_rate": 5.417615215582408e-06,
|
1716 |
+
"loss": 0.0001,
|
1717 |
+
"step": 2780
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.37,
|
1721 |
+
"learning_rate": 5.280118945084422e-06,
|
1722 |
+
"loss": 0.0001,
|
1723 |
+
"step": 2790
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 2.38,
|
1727 |
+
"learning_rate": 5.144183684770565e-06,
|
1728 |
+
"loss": 0.0,
|
1729 |
+
"step": 2800
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 2.39,
|
1733 |
+
"learning_rate": 5.00982019516851e-06,
|
1734 |
+
"loss": 0.0,
|
1735 |
+
"step": 2810
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 2.4,
|
1739 |
+
"learning_rate": 4.877039112385815e-06,
|
1740 |
+
"loss": 0.0001,
|
1741 |
+
"step": 2820
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 2.4,
|
1745 |
+
"learning_rate": 4.74585094726793e-06,
|
1746 |
+
"loss": 0.0003,
|
1747 |
+
"step": 2830
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 2.41,
|
1751 |
+
"learning_rate": 4.616266084566243e-06,
|
1752 |
+
"loss": 0.0,
|
1753 |
+
"step": 2840
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 2.42,
|
1757 |
+
"learning_rate": 4.488294782115957e-06,
|
1758 |
+
"loss": 0.0001,
|
1759 |
+
"step": 2850
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.43,
|
1763 |
+
"learning_rate": 4.361947170024144e-06,
|
1764 |
+
"loss": 0.0001,
|
1765 |
+
"step": 2860
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 2.44,
|
1769 |
+
"learning_rate": 4.2372332498678256e-06,
|
1770 |
+
"loss": 0.0007,
|
1771 |
+
"step": 2870
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 2.45,
|
1775 |
+
"learning_rate": 4.11416289390226e-06,
|
1776 |
+
"loss": 0.0061,
|
1777 |
+
"step": 2880
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 2.46,
|
1781 |
+
"learning_rate": 3.992745844279475e-06,
|
1782 |
+
"loss": 0.0,
|
1783 |
+
"step": 2890
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 2.46,
|
1787 |
+
"learning_rate": 3.872991712277052e-06,
|
1788 |
+
"loss": 0.0001,
|
1789 |
+
"step": 2900
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 2.47,
|
1793 |
+
"learning_rate": 3.7549099775373576e-06,
|
1794 |
+
"loss": 0.0002,
|
1795 |
+
"step": 2910
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 2.48,
|
1799 |
+
"learning_rate": 3.6385099873170875e-06,
|
1800 |
+
"loss": 0.0,
|
1801 |
+
"step": 2920
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.49,
|
1805 |
+
"learning_rate": 3.5238009557473946e-06,
|
1806 |
+
"loss": 0.0,
|
1807 |
+
"step": 2930
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 2.5,
|
1811 |
+
"learning_rate": 3.4107919631044732e-06,
|
1812 |
+
"loss": 0.0028,
|
1813 |
+
"step": 2940
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 2.51,
|
1817 |
+
"learning_rate": 3.299491955090775e-06,
|
1818 |
+
"loss": 0.0003,
|
1819 |
+
"step": 2950
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 2.51,
|
1823 |
+
"learning_rate": 3.1899097421268924e-06,
|
1824 |
+
"loss": 0.0001,
|
1825 |
+
"step": 2960
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 2.52,
|
1829 |
+
"learning_rate": 3.0820539986541054e-06,
|
1830 |
+
"loss": 0.0,
|
1831 |
+
"step": 2970
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 2.53,
|
1835 |
+
"learning_rate": 2.97593326244775e-06,
|
1836 |
+
"loss": 0.0013,
|
1837 |
+
"step": 2980
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 2.54,
|
1841 |
+
"learning_rate": 2.871555933941353e-06,
|
1842 |
+
"loss": 0.0001,
|
1843 |
+
"step": 2990
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.55,
|
1847 |
+
"learning_rate": 2.7689302755616736e-06,
|
1848 |
+
"loss": 0.0001,
|
1849 |
+
"step": 3000
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.55,
|
1853 |
+
"eval_loss": 0.014460938051342964,
|
1854 |
+
"eval_runtime": 87.9924,
|
1855 |
+
"eval_samples_per_second": 22.536,
|
1856 |
+
"eval_steps_per_second": 2.818,
|
1857 |
+
"step": 3000
|
1858 |
+
}
|
1859 |
+
],
|
1860 |
+
"logging_steps": 10,
|
1861 |
+
"max_steps": 3531,
|
1862 |
+
"num_train_epochs": 3,
|
1863 |
+
"save_steps": 1000,
|
1864 |
+
"total_flos": 4.510363947053875e+17,
|
1865 |
+
"trial_name": null,
|
1866 |
+
"trial_params": null
|
1867 |
+
}
|
LLM-Detector-V1-4w/checkpoint-3000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
|
3 |
+
size 4664
|
LLM-Detector-V1-4w/eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.014986271038651466,
|
4 |
+
"eval_runtime": 87.9616,
|
5 |
+
"eval_samples_per_second": 22.544,
|
6 |
+
"eval_steps_per_second": 2.819
|
7 |
+
}
|
LLM-Detector-V1-4w/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
LLM-Detector-V1-4w/tokenization_baichuan.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {},
|
38 |
+
"tokenizer_file": {},
|
39 |
+
}
|
40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
41 |
+
|
42 |
+
|
43 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
44 |
+
"""
|
45 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
vocab_file (`str`):
|
49 |
+
Path to the vocabulary file.
|
50 |
+
"""
|
51 |
+
|
52 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
53 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
54 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
55 |
+
model_input_names = ["input_ids", "attention_mask"]
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_file,
|
60 |
+
unk_token="<unk>",
|
61 |
+
bos_token="<s>",
|
62 |
+
eos_token="</s>",
|
63 |
+
pad_token=None,
|
64 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
+
add_bos_token=True,
|
66 |
+
add_eos_token=False,
|
67 |
+
clean_up_tokenization_spaces=False,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
71 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
72 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
73 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
74 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
75 |
+
super().__init__(
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
add_bos_token=add_bos_token,
|
81 |
+
add_eos_token=add_eos_token,
|
82 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
83 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.add_bos_token = add_bos_token
|
88 |
+
self.add_eos_token = add_eos_token
|
89 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
90 |
+
self.sp_model.Load(vocab_file)
|
91 |
+
|
92 |
+
def __getstate__(self):
|
93 |
+
state = self.__dict__.copy()
|
94 |
+
state["sp_model"] = None
|
95 |
+
return state
|
96 |
+
|
97 |
+
def __setstate__(self, d):
|
98 |
+
self.__dict__ = d
|
99 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
100 |
+
self.sp_model.Load(self.vocab_file)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
"""Returns vocab size"""
|
105 |
+
return self.sp_model.get_piece_size()
|
106 |
+
|
107 |
+
def get_vocab(self):
|
108 |
+
"""Returns vocab as a dict"""
|
109 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
110 |
+
vocab.update(self.added_tokens_encoder)
|
111 |
+
return vocab
|
112 |
+
|
113 |
+
def _tokenize(self, text):
|
114 |
+
"""Returns a tokenized string."""
|
115 |
+
return self.sp_model.encode(text, out_type=str)
|
116 |
+
|
117 |
+
def _convert_token_to_id(self, token):
|
118 |
+
"""Converts a token (str) in an id using the vocab."""
|
119 |
+
return self.sp_model.piece_to_id(token)
|
120 |
+
|
121 |
+
def _convert_id_to_token(self, index):
|
122 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
123 |
+
token = self.sp_model.IdToPiece(index)
|
124 |
+
return token
|
125 |
+
|
126 |
+
def convert_tokens_to_string(self, tokens):
|
127 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
128 |
+
current_sub_tokens = []
|
129 |
+
out_string = ""
|
130 |
+
prev_is_special = False
|
131 |
+
for i, token in enumerate(tokens):
|
132 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
133 |
+
if token in self.all_special_tokens:
|
134 |
+
if not prev_is_special and i != 0:
|
135 |
+
out_string += " "
|
136 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
137 |
+
prev_is_special = True
|
138 |
+
current_sub_tokens = []
|
139 |
+
else:
|
140 |
+
current_sub_tokens.append(token)
|
141 |
+
prev_is_special = False
|
142 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
143 |
+
return out_string
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, "wb") as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
174 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
175 |
+
|
176 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
177 |
+
|
178 |
+
if token_ids_1 is not None:
|
179 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
180 |
+
|
181 |
+
return output
|
182 |
+
|
183 |
+
def get_special_tokens_mask(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
188 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
token_ids_0 (`List[int]`):
|
192 |
+
List of IDs.
|
193 |
+
token_ids_1 (`List[int]`, *optional*):
|
194 |
+
Optional second list of IDs for sequence pairs.
|
195 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
196 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
200 |
+
"""
|
201 |
+
if already_has_special_tokens:
|
202 |
+
return super().get_special_tokens_mask(
|
203 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
204 |
+
)
|
205 |
+
|
206 |
+
bos_token_id = [1] if self.add_bos_token else []
|
207 |
+
eos_token_id = [1] if self.add_eos_token else []
|
208 |
+
|
209 |
+
if token_ids_1 is None:
|
210 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
211 |
+
return (
|
212 |
+
bos_token_id
|
213 |
+
+ ([0] * len(token_ids_0))
|
214 |
+
+ eos_token_id
|
215 |
+
+ bos_token_id
|
216 |
+
+ ([0] * len(token_ids_1))
|
217 |
+
+ eos_token_id
|
218 |
+
)
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
225 |
+
sequence pair mask has the following format:
|
226 |
+
|
227 |
+
```
|
228 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
229 |
+
| first sequence | second sequence |
|
230 |
+
```
|
231 |
+
|
232 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of ids.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
242 |
+
"""
|
243 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
244 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
245 |
+
|
246 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
247 |
+
|
248 |
+
if token_ids_1 is not None:
|
249 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
250 |
+
|
251 |
+
return output
|
LLM-Detector-V1-4w/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
LLM-Detector-V1-4w/tokenizer_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"split_special_tokens": false,
|
39 |
+
"tokenizer_class": "BaichuanTokenizer",
|
40 |
+
"unk_token": {
|
41 |
+
"__type": "AddedToken",
|
42 |
+
"content": "<unk>",
|
43 |
+
"lstrip": false,
|
44 |
+
"normalized": true,
|
45 |
+
"rstrip": false,
|
46 |
+
"single_word": true
|
47 |
+
},
|
48 |
+
"use_fast": false
|
49 |
+
}
|
LLM-Detector-V1-4w/train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.06714861565509712,
|
4 |
+
"train_runtime": 17560.0547,
|
5 |
+
"train_samples_per_second": 6.434,
|
6 |
+
"train_steps_per_second": 0.201
|
7 |
+
}
|
LLM-Detector-V1-4w/trainer_log.jsonl
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 3531, "loss": 9.9461, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999919851200522e-05, "epoch": 0.01, "percentage": 0.28, "elapsed_time": "0:00:50", "remaining_time": "4:59:13"}
|
2 |
+
{"current_steps": 20, "total_steps": 3531, "loss": 6.4908, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9996428002198536e-05, "epoch": 0.02, "percentage": 0.57, "elapsed_time": "0:01:40", "remaining_time": "4:52:40"}
|
3 |
+
{"current_steps": 30, "total_steps": 3531, "loss": 3.708, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9992242747551964e-05, "epoch": 0.03, "percentage": 0.85, "elapsed_time": "0:02:26", "remaining_time": "4:44:13"}
|
4 |
+
{"current_steps": 40, "total_steps": 3531, "loss": 0.8908, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99857130295276e-05, "epoch": 0.03, "percentage": 1.13, "elapsed_time": "0:03:14", "remaining_time": "4:42:21"}
|
5 |
+
{"current_steps": 50, "total_steps": 3531, "loss": 0.2454, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997720546222574e-05, "epoch": 0.04, "percentage": 1.42, "elapsed_time": "0:04:00", "remaining_time": "4:38:33"}
|
6 |
+
{"current_steps": 60, "total_steps": 3531, "loss": 0.1348, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.996672071909866e-05, "epoch": 0.05, "percentage": 1.7, "elapsed_time": "0:04:47", "remaining_time": "4:36:52"}
|
7 |
+
{"current_steps": 70, "total_steps": 3531, "loss": 0.0487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.995425963011034e-05, "epoch": 0.06, "percentage": 1.98, "elapsed_time": "0:05:35", "remaining_time": "4:36:09"}
|
8 |
+
{"current_steps": 80, "total_steps": 3531, "loss": 0.0282, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.993982318167074e-05, "epoch": 0.07, "percentage": 2.27, "elapsed_time": "0:06:17", "remaining_time": "4:31:36"}
|
9 |
+
{"current_steps": 90, "total_steps": 3531, "loss": 0.0455, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.992341251655768e-05, "epoch": 0.08, "percentage": 2.55, "elapsed_time": "0:07:16", "remaining_time": "4:38:08"}
|
10 |
+
{"current_steps": 100, "total_steps": 3531, "loss": 0.0472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9905028933826435e-05, "epoch": 0.08, "percentage": 2.83, "elapsed_time": "0:08:09", "remaining_time": "4:39:57"}
|
11 |
+
{"current_steps": 110, "total_steps": 3531, "loss": 0.0526, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.988467388870688e-05, "epoch": 0.09, "percentage": 3.12, "elapsed_time": "0:08:55", "remaining_time": "4:37:32"}
|
12 |
+
{"current_steps": 120, "total_steps": 3531, "loss": 0.0679, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.986234899248826e-05, "epoch": 0.1, "percentage": 3.4, "elapsed_time": "0:09:42", "remaining_time": "4:35:57"}
|
13 |
+
{"current_steps": 130, "total_steps": 3531, "loss": 0.0314, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.983805601239172e-05, "epoch": 0.11, "percentage": 3.68, "elapsed_time": "0:10:31", "remaining_time": "4:35:12"}
|
14 |
+
{"current_steps": 140, "total_steps": 3531, "loss": 0.0136, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.981179687143034e-05, "epoch": 0.12, "percentage": 3.96, "elapsed_time": "0:11:15", "remaining_time": "4:32:50"}
|
15 |
+
{"current_steps": 150, "total_steps": 3531, "loss": 0.0409, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.978357364825695e-05, "epoch": 0.13, "percentage": 4.25, "elapsed_time": "0:12:02", "remaining_time": "4:31:18"}
|
16 |
+
{"current_steps": 160, "total_steps": 3531, "loss": 0.0284, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.975338857699956e-05, "epoch": 0.14, "percentage": 4.53, "elapsed_time": "0:12:51", "remaining_time": "4:30:46"}
|
17 |
+
{"current_steps": 170, "total_steps": 3531, "loss": 0.0364, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.972124404708454e-05, "epoch": 0.14, "percentage": 4.81, "elapsed_time": "0:13:35", "remaining_time": "4:28:44"}
|
18 |
+
{"current_steps": 180, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968714260304743e-05, "epoch": 0.15, "percentage": 5.1, "elapsed_time": "0:14:27", "remaining_time": "4:29:04"}
|
19 |
+
{"current_steps": 190, "total_steps": 3531, "loss": 0.0174, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.965108694433159e-05, "epoch": 0.16, "percentage": 5.38, "elapsed_time": "0:15:14", "remaining_time": "4:27:51"}
|
20 |
+
{"current_steps": 200, "total_steps": 3531, "loss": 0.0244, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.961307992507443e-05, "epoch": 0.17, "percentage": 5.66, "elapsed_time": "0:16:09", "remaining_time": "4:29:05"}
|
21 |
+
{"current_steps": 210, "total_steps": 3531, "loss": 0.0387, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.957312455388152e-05, "epoch": 0.18, "percentage": 5.95, "elapsed_time": "0:16:54", "remaining_time": "4:27:22"}
|
22 |
+
{"current_steps": 220, "total_steps": 3531, "loss": 0.0264, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.953122399358845e-05, "epoch": 0.19, "percentage": 6.23, "elapsed_time": "0:17:38", "remaining_time": "4:25:37"}
|
23 |
+
{"current_steps": 230, "total_steps": 3531, "loss": 0.0291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.948738156101042e-05, "epoch": 0.2, "percentage": 6.51, "elapsed_time": "0:18:21", "remaining_time": "4:23:32"}
|
24 |
+
{"current_steps": 240, "total_steps": 3531, "loss": 0.0214, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9441600726679694e-05, "epoch": 0.2, "percentage": 6.8, "elapsed_time": "0:19:03", "remaining_time": "4:21:27"}
|
25 |
+
{"current_steps": 250, "total_steps": 3531, "loss": 0.0116, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.939388511457092e-05, "epoch": 0.21, "percentage": 7.08, "elapsed_time": "0:19:46", "remaining_time": "4:19:35"}
|
26 |
+
{"current_steps": 260, "total_steps": 3531, "loss": 0.0191, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.934423850181419e-05, "epoch": 0.22, "percentage": 7.36, "elapsed_time": "0:20:32", "remaining_time": "4:18:26"}
|
27 |
+
{"current_steps": 270, "total_steps": 3531, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9292664818396117e-05, "epoch": 0.23, "percentage": 7.65, "elapsed_time": "0:21:13", "remaining_time": "4:16:15"}
|
28 |
+
{"current_steps": 280, "total_steps": 3531, "loss": 0.0184, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9239168146848666e-05, "epoch": 0.24, "percentage": 7.93, "elapsed_time": "0:22:03", "remaining_time": "4:16:06"}
|
29 |
+
{"current_steps": 290, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9183752721926036e-05, "epoch": 0.25, "percentage": 8.21, "elapsed_time": "0:22:49", "remaining_time": "4:15:10"}
|
30 |
+
{"current_steps": 300, "total_steps": 3531, "loss": 0.0223, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.912642293026942e-05, "epoch": 0.25, "percentage": 8.5, "elapsed_time": "0:23:32", "remaining_time": "4:13:37"}
|
31 |
+
{"current_steps": 310, "total_steps": 3531, "loss": 0.0405, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.906718331005979e-05, "epoch": 0.26, "percentage": 8.78, "elapsed_time": "0:24:20", "remaining_time": "4:12:50"}
|
32 |
+
{"current_steps": 320, "total_steps": 3531, "loss": 0.0461, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.900603855065861e-05, "epoch": 0.27, "percentage": 9.06, "elapsed_time": "0:25:14", "remaining_time": "4:13:13"}
|
33 |
+
{"current_steps": 330, "total_steps": 3531, "loss": 0.0199, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.894299349223665e-05, "epoch": 0.28, "percentage": 9.35, "elapsed_time": "0:25:58", "remaining_time": "4:12:00"}
|
34 |
+
{"current_steps": 340, "total_steps": 3531, "loss": 0.0193, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8878053125390875e-05, "epoch": 0.29, "percentage": 9.63, "elapsed_time": "0:26:45", "remaining_time": "4:11:11"}
|
35 |
+
{"current_steps": 350, "total_steps": 3531, "loss": 0.004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.881122259074935e-05, "epoch": 0.3, "percentage": 9.91, "elapsed_time": "0:27:27", "remaining_time": "4:09:36"}
|
36 |
+
{"current_steps": 360, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.874250717856433e-05, "epoch": 0.31, "percentage": 10.2, "elapsed_time": "0:28:12", "remaining_time": "4:08:30"}
|
37 |
+
{"current_steps": 370, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.867191232829348e-05, "epoch": 0.31, "percentage": 10.48, "elapsed_time": "0:29:00", "remaining_time": "4:07:51"}
|
38 |
+
{"current_steps": 380, "total_steps": 3531, "loss": 0.018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8599443628169295e-05, "epoch": 0.32, "percentage": 10.76, "elapsed_time": "0:29:44", "remaining_time": "4:06:37"}
|
39 |
+
{"current_steps": 390, "total_steps": 3531, "loss": 0.0261, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8525106814756754e-05, "epoch": 0.33, "percentage": 11.05, "elapsed_time": "0:30:35", "remaining_time": "4:06:20"}
|
40 |
+
{"current_steps": 400, "total_steps": 3531, "loss": 0.016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.84489077724992e-05, "epoch": 0.34, "percentage": 11.33, "elapsed_time": "0:31:26", "remaining_time": "4:06:09"}
|
41 |
+
{"current_steps": 410, "total_steps": 3531, "loss": 0.0402, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8370852533252536e-05, "epoch": 0.35, "percentage": 11.61, "elapsed_time": "0:32:16", "remaining_time": "4:05:39"}
|
42 |
+
{"current_steps": 420, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8290947275807755e-05, "epoch": 0.36, "percentage": 11.89, "elapsed_time": "0:33:03", "remaining_time": "4:04:54"}
|
43 |
+
{"current_steps": 430, "total_steps": 3531, "loss": 0.008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8209198325401815e-05, "epoch": 0.37, "percentage": 12.18, "elapsed_time": "0:33:50", "remaining_time": "4:04:01"}
|
44 |
+
{"current_steps": 440, "total_steps": 3531, "loss": 0.0296, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8125612153216976e-05, "epoch": 0.37, "percentage": 12.46, "elapsed_time": "0:34:40", "remaining_time": "4:03:34"}
|
45 |
+
{"current_steps": 450, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.804019537586849e-05, "epoch": 0.38, "percentage": 12.74, "elapsed_time": "0:35:25", "remaining_time": "4:02:33"}
|
46 |
+
{"current_steps": 460, "total_steps": 3531, "loss": 0.0142, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7952954754880886e-05, "epoch": 0.39, "percentage": 13.03, "elapsed_time": "0:36:13", "remaining_time": "4:01:52"}
|
47 |
+
{"current_steps": 470, "total_steps": 3531, "loss": 0.0163, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7863897196152704e-05, "epoch": 0.4, "percentage": 13.31, "elapsed_time": "0:37:04", "remaining_time": "4:01:27"}
|
48 |
+
{"current_steps": 480, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7773029749409836e-05, "epoch": 0.41, "percentage": 13.59, "elapsed_time": "0:37:53", "remaining_time": "4:00:52"}
|
49 |
+
{"current_steps": 490, "total_steps": 3531, "loss": 0.0355, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.76803596076475e-05, "epoch": 0.42, "percentage": 13.88, "elapsed_time": "0:38:40", "remaining_time": "4:00:00"}
|
50 |
+
{"current_steps": 500, "total_steps": 3531, "loss": 0.0199, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.758589410656078e-05, "epoch": 0.42, "percentage": 14.16, "elapsed_time": "0:39:24", "remaining_time": "3:58:55"}
|
51 |
+
{"current_steps": 500, "total_steps": 3531, "loss": null, "eval_loss": 0.010466881096363068, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.42, "percentage": 14.16, "elapsed_time": "0:39:24", "remaining_time": "3:58:55"}
|
52 |
+
{"current_steps": 510, "total_steps": 3531, "loss": 0.0341, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.748964072396403e-05, "epoch": 0.43, "percentage": 14.44, "elapsed_time": "0:41:49", "remaining_time": "4:07:42"}
|
53 |
+
{"current_steps": 520, "total_steps": 3531, "loss": 0.0137, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7391607079198876e-05, "epoch": 0.44, "percentage": 14.73, "elapsed_time": "0:42:32", "remaining_time": "4:06:17"}
|
54 |
+
{"current_steps": 530, "total_steps": 3531, "loss": 0.0138, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7291800932531064e-05, "epoch": 0.45, "percentage": 15.01, "elapsed_time": "0:43:25", "remaining_time": "4:05:55"}
|
55 |
+
{"current_steps": 540, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.719023018453623e-05, "epoch": 0.46, "percentage": 15.29, "elapsed_time": "0:44:16", "remaining_time": "4:05:12"}
|
56 |
+
{"current_steps": 550, "total_steps": 3531, "loss": 0.0376, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.708690287547441e-05, "epoch": 0.47, "percentage": 15.58, "elapsed_time": "0:45:07", "remaining_time": "4:04:36"}
|
57 |
+
{"current_steps": 560, "total_steps": 3531, "loss": 0.006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.698182718465368e-05, "epoch": 0.48, "percentage": 15.86, "elapsed_time": "0:45:54", "remaining_time": "4:03:30"}
|
58 |
+
{"current_steps": 570, "total_steps": 3531, "loss": 0.0371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.687501142978258e-05, "epoch": 0.48, "percentage": 16.14, "elapsed_time": "0:46:42", "remaining_time": "4:02:38"}
|
59 |
+
{"current_steps": 580, "total_steps": 3531, "loss": 0.0322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6766464066311765e-05, "epoch": 0.49, "percentage": 16.43, "elapsed_time": "0:47:39", "remaining_time": "4:02:27"}
|
60 |
+
{"current_steps": 590, "total_steps": 3531, "loss": 0.0086, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.665619368676466e-05, "epoch": 0.5, "percentage": 16.71, "elapsed_time": "0:48:24", "remaining_time": "4:01:20"}
|
61 |
+
{"current_steps": 600, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6544209020057285e-05, "epoch": 0.51, "percentage": 16.99, "elapsed_time": "0:49:11", "remaining_time": "4:00:18"}
|
62 |
+
{"current_steps": 610, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.643051893080725e-05, "epoch": 0.52, "percentage": 17.28, "elapsed_time": "0:49:55", "remaining_time": "3:59:02"}
|
63 |
+
{"current_steps": 620, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.631513241863209e-05, "epoch": 0.53, "percentage": 17.56, "elapsed_time": "0:50:44", "remaining_time": "3:58:13"}
|
64 |
+
{"current_steps": 630, "total_steps": 3531, "loss": 0.0187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.619805861743683e-05, "epoch": 0.54, "percentage": 17.84, "elapsed_time": "0:51:31", "remaining_time": "3:57:14"}
|
65 |
+
{"current_steps": 640, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.607930679469096e-05, "epoch": 0.54, "percentage": 18.13, "elapsed_time": "0:52:23", "remaining_time": "3:56:39"}
|
66 |
+
{"current_steps": 650, "total_steps": 3531, "loss": 0.0109, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.595888635069481e-05, "epoch": 0.55, "percentage": 18.41, "elapsed_time": "0:53:13", "remaining_time": "3:55:53"}
|
67 |
+
{"current_steps": 660, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5836806817835475e-05, "epoch": 0.56, "percentage": 18.69, "elapsed_time": "0:54:05", "remaining_time": "3:55:19"}
|
68 |
+
{"current_steps": 670, "total_steps": 3531, "loss": 0.0167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.57130778598322e-05, "epoch": 0.57, "percentage": 18.97, "elapsed_time": "0:54:52", "remaining_time": "3:54:19"}
|
69 |
+
{"current_steps": 680, "total_steps": 3531, "loss": 0.0143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5587709270971425e-05, "epoch": 0.58, "percentage": 19.26, "elapsed_time": "0:55:42", "remaining_time": "3:53:35"}
|
70 |
+
{"current_steps": 690, "total_steps": 3531, "loss": 0.0015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.546071097533145e-05, "epoch": 0.59, "percentage": 19.54, "elapsed_time": "0:56:31", "remaining_time": "3:52:42"}
|
71 |
+
{"current_steps": 700, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.533209302599691e-05, "epoch": 0.59, "percentage": 19.82, "elapsed_time": "0:57:19", "remaining_time": "3:51:51"}
|
72 |
+
{"current_steps": 710, "total_steps": 3531, "loss": 0.006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.520186560426292e-05, "epoch": 0.6, "percentage": 20.11, "elapsed_time": "0:58:08", "remaining_time": "3:50:59"}
|
73 |
+
{"current_steps": 720, "total_steps": 3531, "loss": 0.0093, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.507003901882915e-05, "epoch": 0.61, "percentage": 20.39, "elapsed_time": "0:59:02", "remaining_time": "3:50:31"}
|
74 |
+
{"current_steps": 730, "total_steps": 3531, "loss": 0.0046, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.493662370498383e-05, "epoch": 0.62, "percentage": 20.67, "elapsed_time": "0:59:49", "remaining_time": "3:49:31"}
|
75 |
+
{"current_steps": 740, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4801630223777665e-05, "epoch": 0.63, "percentage": 20.96, "elapsed_time": "1:00:38", "remaining_time": "3:48:43"}
|
76 |
+
{"current_steps": 750, "total_steps": 3531, "loss": 0.0102, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.466506926118782e-05, "epoch": 0.64, "percentage": 21.24, "elapsed_time": "1:01:26", "remaining_time": "3:47:51"}
|
77 |
+
{"current_steps": 760, "total_steps": 3531, "loss": 0.017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4526951627272074e-05, "epoch": 0.65, "percentage": 21.52, "elapsed_time": "1:02:18", "remaining_time": "3:47:10"}
|
78 |
+
{"current_steps": 770, "total_steps": 3531, "loss": 0.0033, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.438728825531305e-05, "epoch": 0.65, "percentage": 21.81, "elapsed_time": "1:03:04", "remaining_time": "3:46:11"}
|
79 |
+
{"current_steps": 780, "total_steps": 3531, "loss": 0.0061, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4246090200952816e-05, "epoch": 0.66, "percentage": 22.09, "elapsed_time": "1:03:46", "remaining_time": "3:44:57"}
|
80 |
+
{"current_steps": 790, "total_steps": 3531, "loss": 0.0032, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.410336864131762e-05, "epoch": 0.67, "percentage": 22.37, "elapsed_time": "1:04:35", "remaining_time": "3:44:07"}
|
81 |
+
{"current_steps": 800, "total_steps": 3531, "loss": 0.0043, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.395913487413324e-05, "epoch": 0.68, "percentage": 22.66, "elapsed_time": "1:05:23", "remaining_time": "3:43:13"}
|
82 |
+
{"current_steps": 810, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3813400316830576e-05, "epoch": 0.69, "percentage": 22.94, "elapsed_time": "1:06:14", "remaining_time": "3:42:32"}
|
83 |
+
{"current_steps": 820, "total_steps": 3531, "loss": 0.0273, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.36661765056419e-05, "epoch": 0.7, "percentage": 23.22, "elapsed_time": "1:07:01", "remaining_time": "3:41:34"}
|
84 |
+
{"current_steps": 830, "total_steps": 3531, "loss": 0.0125, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.351747509468763e-05, "epoch": 0.71, "percentage": 23.51, "elapsed_time": "1:07:50", "remaining_time": "3:40:45"}
|
85 |
+
{"current_steps": 840, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.336730785505382e-05, "epoch": 0.71, "percentage": 23.79, "elapsed_time": "1:08:46", "remaining_time": "3:40:18"}
|
86 |
+
{"current_steps": 850, "total_steps": 3531, "loss": 0.0127, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3215686673860384e-05, "epoch": 0.72, "percentage": 24.07, "elapsed_time": "1:09:39", "remaining_time": "3:39:42"}
|
87 |
+
{"current_steps": 860, "total_steps": 3531, "loss": 0.0161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.306262355332006e-05, "epoch": 0.73, "percentage": 24.36, "elapsed_time": "1:10:26", "remaining_time": "3:38:45"}
|
88 |
+
{"current_steps": 870, "total_steps": 3531, "loss": 0.0169, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.290813060978839e-05, "epoch": 0.74, "percentage": 24.64, "elapsed_time": "1:11:10", "remaining_time": "3:37:41"}
|
89 |
+
{"current_steps": 880, "total_steps": 3531, "loss": 0.0081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2752220072804564e-05, "epoch": 0.75, "percentage": 24.92, "elapsed_time": "1:12:00", "remaining_time": "3:36:56"}
|
90 |
+
{"current_steps": 890, "total_steps": 3531, "loss": 0.0131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.259490428412335e-05, "epoch": 0.76, "percentage": 25.21, "elapsed_time": "1:12:43", "remaining_time": "3:35:47"}
|
91 |
+
{"current_steps": 900, "total_steps": 3531, "loss": 0.0205, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.243619569673814e-05, "epoch": 0.76, "percentage": 25.49, "elapsed_time": "1:13:33", "remaining_time": "3:35:01"}
|
92 |
+
{"current_steps": 910, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2276106873895143e-05, "epoch": 0.77, "percentage": 25.77, "elapsed_time": "1:14:18", "remaining_time": "3:34:02"}
|
93 |
+
{"current_steps": 920, "total_steps": 3531, "loss": 0.018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2114650488098936e-05, "epoch": 0.78, "percentage": 26.05, "elapsed_time": "1:15:02", "remaining_time": "3:32:59"}
|
94 |
+
{"current_steps": 930, "total_steps": 3531, "loss": 0.0083, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.19518393201093e-05, "epoch": 0.79, "percentage": 26.34, "elapsed_time": "1:15:46", "remaining_time": "3:31:56"}
|
95 |
+
{"current_steps": 940, "total_steps": 3531, "loss": 0.0291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.178768625792949e-05, "epoch": 0.8, "percentage": 26.62, "elapsed_time": "1:16:35", "remaining_time": "3:31:06"}
|
96 |
+
{"current_steps": 950, "total_steps": 3531, "loss": 0.0226, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.162220429578605e-05, "epoch": 0.81, "percentage": 26.9, "elapsed_time": "1:17:20", "remaining_time": "3:30:06"}
|
97 |
+
{"current_steps": 960, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.145540653310018e-05, "epoch": 0.82, "percentage": 27.19, "elapsed_time": "1:18:15", "remaining_time": "3:29:34"}
|
98 |
+
{"current_steps": 970, "total_steps": 3531, "loss": 0.0078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.128730617345084e-05, "epoch": 0.82, "percentage": 27.47, "elapsed_time": "1:19:05", "remaining_time": "3:28:47"}
|
99 |
+
{"current_steps": 980, "total_steps": 3531, "loss": 0.0084, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.111791652352952e-05, "epoch": 0.83, "percentage": 27.75, "elapsed_time": "1:19:54", "remaining_time": "3:28:00"}
|
100 |
+
{"current_steps": 990, "total_steps": 3531, "loss": 0.0044, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.094725099208688e-05, "epoch": 0.84, "percentage": 28.04, "elapsed_time": "1:20:38", "remaining_time": "3:26:58"}
|
101 |
+
{"current_steps": 1000, "total_steps": 3531, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.077532308887141e-05, "epoch": 0.85, "percentage": 28.32, "elapsed_time": "1:21:29", "remaining_time": "3:26:14"}
|
102 |
+
{"current_steps": 1000, "total_steps": 3531, "loss": null, "eval_loss": 0.01175768580287695, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.85, "percentage": 28.32, "elapsed_time": "1:21:29", "remaining_time": "3:26:14"}
|
103 |
+
{"current_steps": 1010, "total_steps": 3531, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.060214642355989e-05, "epoch": 0.86, "percentage": 28.6, "elapsed_time": "1:23:41", "remaining_time": "3:28:53"}
|
104 |
+
{"current_steps": 1020, "total_steps": 3531, "loss": 0.021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.042773470468016e-05, "epoch": 0.87, "percentage": 28.89, "elapsed_time": "1:24:23", "remaining_time": "3:27:43"}
|
105 |
+
{"current_steps": 1030, "total_steps": 3531, "loss": 0.0424, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0252101738525916e-05, "epoch": 0.88, "percentage": 29.17, "elapsed_time": "1:25:17", "remaining_time": "3:27:05"}
|
106 |
+
{"current_steps": 1040, "total_steps": 3531, "loss": 0.0194, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0075261428063806e-05, "epoch": 0.88, "percentage": 29.45, "elapsed_time": "1:26:08", "remaining_time": "3:26:18"}
|
107 |
+
{"current_steps": 1050, "total_steps": 3531, "loss": 0.0025, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9897227771832924e-05, "epoch": 0.89, "percentage": 29.74, "elapsed_time": "1:26:56", "remaining_time": "3:25:25"}
|
108 |
+
{"current_steps": 1060, "total_steps": 3531, "loss": 0.0044, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.971801486283665e-05, "epoch": 0.9, "percentage": 30.02, "elapsed_time": "1:27:46", "remaining_time": "3:24:36"}
|
109 |
+
{"current_steps": 1070, "total_steps": 3531, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.953763688742708e-05, "epoch": 0.91, "percentage": 30.3, "elapsed_time": "1:28:37", "remaining_time": "3:23:50"}
|
110 |
+
{"current_steps": 1080, "total_steps": 3531, "loss": 0.0071, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9356108124182067e-05, "epoch": 0.92, "percentage": 30.59, "elapsed_time": "1:29:21", "remaining_time": "3:22:48"}
|
111 |
+
{"current_steps": 1090, "total_steps": 3531, "loss": 0.0145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9173442942774885e-05, "epoch": 0.93, "percentage": 30.87, "elapsed_time": "1:30:12", "remaining_time": "3:22:00"}
|
112 |
+
{"current_steps": 1100, "total_steps": 3531, "loss": 0.0371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.898965580283681e-05, "epoch": 0.93, "percentage": 31.15, "elapsed_time": "1:30:55", "remaining_time": "3:20:55"}
|
113 |
+
{"current_steps": 1110, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.880476125281244e-05, "epoch": 0.94, "percentage": 31.44, "elapsed_time": "1:31:47", "remaining_time": "3:20:13"}
|
114 |
+
{"current_steps": 1120, "total_steps": 3531, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.861877392880808e-05, "epoch": 0.95, "percentage": 31.72, "elapsed_time": "1:32:42", "remaining_time": "3:19:34"}
|
115 |
+
{"current_steps": 1130, "total_steps": 3531, "loss": 0.008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.843170855343317e-05, "epoch": 0.96, "percentage": 32.0, "elapsed_time": "1:33:28", "remaining_time": "3:18:36"}
|
116 |
+
{"current_steps": 1140, "total_steps": 3531, "loss": 0.0089, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8243579934634846e-05, "epoch": 0.97, "percentage": 32.29, "elapsed_time": "1:34:16", "remaining_time": "3:17:44"}
|
117 |
+
{"current_steps": 1150, "total_steps": 3531, "loss": 0.0034, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.805440296452574e-05, "epoch": 0.98, "percentage": 32.57, "elapsed_time": "1:35:03", "remaining_time": "3:16:48"}
|
118 |
+
{"current_steps": 1160, "total_steps": 3531, "loss": 0.0019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.786419261820514e-05, "epoch": 0.99, "percentage": 32.85, "elapsed_time": "1:35:53", "remaining_time": "3:15:59"}
|
119 |
+
{"current_steps": 1170, "total_steps": 3531, "loss": 0.0164, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7672963952573614e-05, "epoch": 0.99, "percentage": 33.14, "elapsed_time": "1:36:42", "remaining_time": "3:15:09"}
|
120 |
+
{"current_steps": 1180, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.748073210514102e-05, "epoch": 1.0, "percentage": 33.42, "elapsed_time": "1:37:25", "remaining_time": "3:14:07"}
|
121 |
+
{"current_steps": 1190, "total_steps": 3531, "loss": 0.0072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.728751229282836e-05, "epoch": 1.01, "percentage": 33.7, "elapsed_time": "1:38:14", "remaining_time": "3:13:16"}
|
122 |
+
{"current_steps": 1200, "total_steps": 3531, "loss": 0.0041, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.70933198107631e-05, "epoch": 1.02, "percentage": 33.98, "elapsed_time": "1:39:02", "remaining_time": "3:12:22"}
|
123 |
+
{"current_steps": 1210, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.689817003106852e-05, "epoch": 1.03, "percentage": 34.27, "elapsed_time": "1:39:45", "remaining_time": "3:11:20"}
|
124 |
+
{"current_steps": 1220, "total_steps": 3531, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.670207840164678e-05, "epoch": 1.04, "percentage": 34.55, "elapsed_time": "1:40:32", "remaining_time": "3:10:27"}
|
125 |
+
{"current_steps": 1230, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.650506044495615e-05, "epoch": 1.05, "percentage": 34.83, "elapsed_time": "1:41:23", "remaining_time": "3:09:40"}
|
126 |
+
{"current_steps": 1240, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.630713175678222e-05, "epoch": 1.05, "percentage": 35.12, "elapsed_time": "1:42:11", "remaining_time": "3:08:49"}
|
127 |
+
{"current_steps": 1250, "total_steps": 3531, "loss": 0.0069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.610830800500335e-05, "epoch": 1.06, "percentage": 35.4, "elapsed_time": "1:43:06", "remaining_time": "3:08:09"}
|
128 |
+
{"current_steps": 1260, "total_steps": 3531, "loss": 0.0081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.590860492835046e-05, "epoch": 1.07, "percentage": 35.68, "elapsed_time": "1:43:59", "remaining_time": "3:07:26"}
|
129 |
+
{"current_steps": 1270, "total_steps": 3531, "loss": 0.0107, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5708038335161134e-05, "epoch": 1.08, "percentage": 35.97, "elapsed_time": "1:44:51", "remaining_time": "3:06:40"}
|
130 |
+
{"current_steps": 1280, "total_steps": 3531, "loss": 0.0074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.550662410212819e-05, "epoch": 1.09, "percentage": 36.25, "elapsed_time": "1:45:35", "remaining_time": "3:05:41"}
|
131 |
+
{"current_steps": 1290, "total_steps": 3531, "loss": 0.0048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5304378173043e-05, "epoch": 1.1, "percentage": 36.53, "elapsed_time": "1:46:22", "remaining_time": "3:04:46"}
|
132 |
+
{"current_steps": 1300, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5101316557533294e-05, "epoch": 1.1, "percentage": 36.82, "elapsed_time": "1:47:13", "remaining_time": "3:04:00"}
|
133 |
+
{"current_steps": 1310, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.489745532979593e-05, "epoch": 1.11, "percentage": 37.1, "elapsed_time": "1:47:59", "remaining_time": "3:03:05"}
|
134 |
+
{"current_steps": 1320, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.469281062732442e-05, "epoch": 1.12, "percentage": 37.38, "elapsed_time": "1:48:52", "remaining_time": "3:02:21"}
|
135 |
+
{"current_steps": 1330, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.448739864963154e-05, "epoch": 1.13, "percentage": 37.67, "elapsed_time": "1:49:37", "remaining_time": "3:01:25"}
|
136 |
+
{"current_steps": 1340, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4281235656966915e-05, "epoch": 1.14, "percentage": 37.95, "elapsed_time": "1:50:24", "remaining_time": "3:00:30"}
|
137 |
+
{"current_steps": 1350, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4074337969029965e-05, "epoch": 1.15, "percentage": 38.23, "elapsed_time": "1:51:09", "remaining_time": "2:59:35"}
|
138 |
+
{"current_steps": 1360, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.386672196367799e-05, "epoch": 1.16, "percentage": 38.52, "elapsed_time": "1:52:06", "remaining_time": "2:58:58"}
|
139 |
+
{"current_steps": 1370, "total_steps": 3531, "loss": 0.0131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.365840407562974e-05, "epoch": 1.16, "percentage": 38.8, "elapsed_time": "1:52:52", "remaining_time": "2:58:02"}
|
140 |
+
{"current_steps": 1380, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3449400795164416e-05, "epoch": 1.17, "percentage": 39.08, "elapsed_time": "1:53:36", "remaining_time": "2:57:04"}
|
141 |
+
{"current_steps": 1390, "total_steps": 3531, "loss": 0.0058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.323972866681637e-05, "epoch": 1.18, "percentage": 39.37, "elapsed_time": "1:54:22", "remaining_time": "2:56:09"}
|
142 |
+
{"current_steps": 1400, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3029404288065426e-05, "epoch": 1.19, "percentage": 39.65, "elapsed_time": "1:55:10", "remaining_time": "2:55:18"}
|
143 |
+
{"current_steps": 1410, "total_steps": 3531, "loss": 0.0029, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2818444308023e-05, "epoch": 1.2, "percentage": 39.93, "elapsed_time": "1:55:56", "remaining_time": "2:54:24"}
|
144 |
+
{"current_steps": 1420, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2606865426114234e-05, "epoch": 1.21, "percentage": 40.22, "elapsed_time": "1:56:46", "remaining_time": "2:53:36"}
|
145 |
+
{"current_steps": 1430, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.239468439075604e-05, "epoch": 1.21, "percentage": 40.5, "elapsed_time": "1:57:36", "remaining_time": "2:52:47"}
|
146 |
+
{"current_steps": 1440, "total_steps": 3531, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2181917998031326e-05, "epoch": 1.22, "percentage": 40.78, "elapsed_time": "1:58:17", "remaining_time": "2:51:46"}
|
147 |
+
{"current_steps": 1450, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.196858309035941e-05, "epoch": 1.23, "percentage": 41.06, "elapsed_time": "1:59:09", "remaining_time": "2:51:00"}
|
148 |
+
{"current_steps": 1460, "total_steps": 3531, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.175469655516284e-05, "epoch": 1.24, "percentage": 41.35, "elapsed_time": "1:59:58", "remaining_time": "2:50:10"}
|
149 |
+
{"current_steps": 1470, "total_steps": 3531, "loss": 0.0037, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.154027532353052e-05, "epoch": 1.25, "percentage": 41.63, "elapsed_time": "2:00:51", "remaining_time": "2:49:27"}
|
150 |
+
{"current_steps": 1480, "total_steps": 3531, "loss": 0.0065, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.132533636887753e-05, "epoch": 1.26, "percentage": 41.91, "elapsed_time": "2:01:40", "remaining_time": "2:48:37"}
|
151 |
+
{"current_steps": 1490, "total_steps": 3531, "loss": 0.0092, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1109896705601485e-05, "epoch": 1.27, "percentage": 42.2, "elapsed_time": "2:02:28", "remaining_time": "2:47:46"}
|
152 |
+
{"current_steps": 1500, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0893973387735687e-05, "epoch": 1.27, "percentage": 42.48, "elapsed_time": "2:03:13", "remaining_time": "2:46:50"}
|
153 |
+
{"current_steps": 1500, "total_steps": 3531, "loss": null, "eval_loss": 0.010954583063721657, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.27, "percentage": 42.48, "elapsed_time": "2:03:13", "remaining_time": "2:46:50"}
|
154 |
+
{"current_steps": 1510, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.067758350759917e-05, "epoch": 1.28, "percentage": 42.76, "elapsed_time": "2:05:24", "remaining_time": "2:47:51"}
|
155 |
+
{"current_steps": 1520, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.046074419444366e-05, "epoch": 1.29, "percentage": 43.05, "elapsed_time": "2:06:10", "remaining_time": "2:46:55"}
|
156 |
+
{"current_steps": 1530, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0243472613097656e-05, "epoch": 1.3, "percentage": 43.33, "elapsed_time": "2:07:01", "remaining_time": "2:46:07"}
|
157 |
+
{"current_steps": 1540, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.002578596260765e-05, "epoch": 1.31, "percentage": 43.61, "elapsed_time": "2:07:47", "remaining_time": "2:45:13"}
|
158 |
+
{"current_steps": 1550, "total_steps": 3531, "loss": 0.0086, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.980770147487668e-05, "epoch": 1.32, "percentage": 43.9, "elapsed_time": "2:08:29", "remaining_time": "2:44:13"}
|
159 |
+
{"current_steps": 1560, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.958923641330028e-05, "epoch": 1.33, "percentage": 44.18, "elapsed_time": "2:09:24", "remaining_time": "2:43:30"}
|
160 |
+
{"current_steps": 1570, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9370408071399898e-05, "epoch": 1.33, "percentage": 44.46, "elapsed_time": "2:10:11", "remaining_time": "2:42:37"}
|
161 |
+
{"current_steps": 1580, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9151233771453956e-05, "epoch": 1.34, "percentage": 44.75, "elapsed_time": "2:11:11", "remaining_time": "2:41:59"}
|
162 |
+
{"current_steps": 1590, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8931730863126666e-05, "epoch": 1.35, "percentage": 45.03, "elapsed_time": "2:12:04", "remaining_time": "2:41:14"}
|
163 |
+
{"current_steps": 1600, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.871191672209459e-05, "epoch": 1.36, "percentage": 45.31, "elapsed_time": "2:12:56", "remaining_time": "2:40:26"}
|
164 |
+
{"current_steps": 1610, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8491808748671255e-05, "epoch": 1.37, "percentage": 45.6, "elapsed_time": "2:13:44", "remaining_time": "2:39:34"}
|
165 |
+
{"current_steps": 1620, "total_steps": 3531, "loss": 0.0115, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8271424366429706e-05, "epoch": 1.38, "percentage": 45.88, "elapsed_time": "2:14:35", "remaining_time": "2:38:45"}
|
166 |
+
{"current_steps": 1630, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8050781020823296e-05, "epoch": 1.38, "percentage": 46.16, "elapsed_time": "2:15:21", "remaining_time": "2:37:51"}
|
167 |
+
{"current_steps": 1640, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7829896177804716e-05, "epoch": 1.39, "percentage": 46.45, "elapsed_time": "2:16:13", "remaining_time": "2:37:04"}
|
168 |
+
{"current_steps": 1650, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.760878732244339e-05, "epoch": 1.4, "percentage": 46.73, "elapsed_time": "2:17:04", "remaining_time": "2:36:15"}
|
169 |
+
{"current_steps": 1660, "total_steps": 3531, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7387471957541405e-05, "epoch": 1.41, "percentage": 47.01, "elapsed_time": "2:17:52", "remaining_time": "2:35:24"}
|
170 |
+
{"current_steps": 1670, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7165967602247964e-05, "epoch": 1.42, "percentage": 47.3, "elapsed_time": "2:18:40", "remaining_time": "2:34:31"}
|
171 |
+
{"current_steps": 1680, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.694429179067261e-05, "epoch": 1.43, "percentage": 47.58, "elapsed_time": "2:19:25", "remaining_time": "2:33:37"}
|
172 |
+
{"current_steps": 1690, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6744651468034758e-05, "epoch": 1.44, "percentage": 47.86, "elapsed_time": "2:20:14", "remaining_time": "2:32:46"}
|
173 |
+
{"current_steps": 1700, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6522698243485527e-05, "epoch": 1.44, "percentage": 48.15, "elapsed_time": "2:20:59", "remaining_time": "2:31:51"}
|
174 |
+
{"current_steps": 1710, "total_steps": 3531, "loss": 0.0058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6300624483347926e-05, "epoch": 1.45, "percentage": 48.43, "elapsed_time": "2:21:44", "remaining_time": "2:30:56"}
|
175 |
+
{"current_steps": 1720, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.607844776680513e-05, "epoch": 1.46, "percentage": 48.71, "elapsed_time": "2:22:34", "remaining_time": "2:30:07"}
|
176 |
+
{"current_steps": 1730, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.585618568119027e-05, "epoch": 1.47, "percentage": 48.99, "elapsed_time": "2:23:21", "remaining_time": "2:29:14"}
|
177 |
+
{"current_steps": 1740, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.56338558205942e-05, "epoch": 1.48, "percentage": 49.28, "elapsed_time": "2:24:08", "remaining_time": "2:28:21"}
|
178 |
+
{"current_steps": 1750, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5411475784472805e-05, "epoch": 1.49, "percentage": 49.56, "elapsed_time": "2:24:58", "remaining_time": "2:27:32"}
|
179 |
+
{"current_steps": 1760, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5189063176253825e-05, "epoch": 1.5, "percentage": 49.84, "elapsed_time": "2:25:41", "remaining_time": "2:26:36"}
|
180 |
+
{"current_steps": 1770, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.496663560194338e-05, "epoch": 1.5, "percentage": 50.13, "elapsed_time": "2:26:28", "remaining_time": "2:25:43"}
|
181 |
+
{"current_steps": 1780, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4744210668732295e-05, "epoch": 1.51, "percentage": 50.41, "elapsed_time": "2:27:14", "remaining_time": "2:24:50"}
|
182 |
+
{"current_steps": 1790, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.452180598360232e-05, "epoch": 1.52, "percentage": 50.69, "elapsed_time": "2:28:01", "remaining_time": "2:23:58"}
|
183 |
+
{"current_steps": 1800, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.429943915193239e-05, "epoch": 1.53, "percentage": 50.98, "elapsed_time": "2:28:52", "remaining_time": "2:23:10"}
|
184 |
+
{"current_steps": 1810, "total_steps": 3531, "loss": 0.0146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4077127776104984e-05, "epoch": 1.54, "percentage": 51.26, "elapsed_time": "2:29:40", "remaining_time": "2:22:18"}
|
185 |
+
{"current_steps": 1820, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3854889454112748e-05, "epoch": 1.55, "percentage": 51.54, "elapsed_time": "2:30:26", "remaining_time": "2:21:25"}
|
186 |
+
{"current_steps": 1830, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3632741778165442e-05, "epoch": 1.55, "percentage": 51.83, "elapsed_time": "2:31:09", "remaining_time": "2:20:30"}
|
187 |
+
{"current_steps": 1840, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3410702333297356e-05, "epoch": 1.56, "percentage": 52.11, "elapsed_time": "2:31:58", "remaining_time": "2:19:40"}
|
188 |
+
{"current_steps": 1850, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.318878869597528e-05, "epoch": 1.57, "percentage": 52.39, "elapsed_time": "2:32:47", "remaining_time": "2:18:49"}
|
189 |
+
{"current_steps": 1860, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2967018432707213e-05, "epoch": 1.58, "percentage": 52.68, "elapsed_time": "2:33:35", "remaining_time": "2:17:59"}
|
190 |
+
{"current_steps": 1870, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2745409098651744e-05, "epoch": 1.59, "percentage": 52.96, "elapsed_time": "2:34:20", "remaining_time": "2:17:05"}
|
191 |
+
{"current_steps": 1880, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2523978236228442e-05, "epoch": 1.6, "percentage": 53.24, "elapsed_time": "2:35:06", "remaining_time": "2:16:12"}
|
192 |
+
{"current_steps": 1890, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2302743373729205e-05, "epoch": 1.61, "percentage": 53.53, "elapsed_time": "2:35:55", "remaining_time": "2:15:22"}
|
193 |
+
{"current_steps": 1900, "total_steps": 3531, "loss": 0.0136, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2081722023930743e-05, "epoch": 1.61, "percentage": 53.81, "elapsed_time": "2:36:42", "remaining_time": "2:14:31"}
|
194 |
+
{"current_steps": 1910, "total_steps": 3531, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1860931682708248e-05, "epoch": 1.62, "percentage": 54.09, "elapsed_time": "2:37:31", "remaining_time": "2:13:41"}
|
195 |
+
{"current_steps": 1920, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.164038982765047e-05, "epoch": 1.63, "percentage": 54.38, "elapsed_time": "2:38:20", "remaining_time": "2:12:51"}
|
196 |
+
{"current_steps": 1930, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1420113916676183e-05, "epoch": 1.64, "percentage": 54.66, "elapsed_time": "2:39:08", "remaining_time": "2:12:00"}
|
197 |
+
{"current_steps": 1940, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1200121386652246e-05, "epoch": 1.65, "percentage": 54.94, "elapsed_time": "2:39:54", "remaining_time": "2:11:08"}
|
198 |
+
{"current_steps": 1950, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0980429652013297e-05, "epoch": 1.66, "percentage": 55.23, "elapsed_time": "2:40:39", "remaining_time": "2:10:15"}
|
199 |
+
{"current_steps": 1960, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0761056103383258e-05, "epoch": 1.67, "percentage": 55.51, "elapsed_time": "2:41:20", "remaining_time": "2:09:19"}
|
200 |
+
{"current_steps": 1970, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0542018106198697e-05, "epoch": 1.67, "percentage": 55.79, "elapsed_time": "2:42:03", "remaining_time": "2:08:24"}
|
201 |
+
{"current_steps": 1980, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0323332999334198e-05, "epoch": 1.68, "percentage": 56.07, "elapsed_time": "2:42:44", "remaining_time": "2:07:29"}
|
202 |
+
{"current_steps": 1990, "total_steps": 3531, "loss": 0.0149, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.010501809372981e-05, "epoch": 1.69, "percentage": 56.36, "elapsed_time": "2:43:46", "remaining_time": "2:06:49"}
|
203 |
+
{"current_steps": 2000, "total_steps": 3531, "loss": 0.0143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.988709067102076e-05, "epoch": 1.7, "percentage": 56.64, "elapsed_time": "2:44:34", "remaining_time": "2:05:58"}
|
204 |
+
{"current_steps": 2000, "total_steps": 3531, "loss": null, "eval_loss": 0.013543435372412205, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.7, "percentage": 56.64, "elapsed_time": "2:44:34", "remaining_time": "2:05:58"}
|
205 |
+
{"current_steps": 2010, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.966956798216943e-05, "epoch": 1.71, "percentage": 56.92, "elapsed_time": "2:46:50", "remaining_time": "2:06:14"}
|
206 |
+
{"current_steps": 2020, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.945246724609978e-05, "epoch": 1.72, "percentage": 57.21, "elapsed_time": "2:47:34", "remaining_time": "2:05:20"}
|
207 |
+
{"current_steps": 2030, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9235805648334342e-05, "epoch": 1.72, "percentage": 57.49, "elapsed_time": "2:48:23", "remaining_time": "2:04:30"}
|
208 |
+
{"current_steps": 2040, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9019600339633798e-05, "epoch": 1.73, "percentage": 57.77, "elapsed_time": "2:49:08", "remaining_time": "2:03:37"}
|
209 |
+
{"current_steps": 2050, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8803868434639345e-05, "epoch": 1.74, "percentage": 58.06, "elapsed_time": "2:49:50", "remaining_time": "2:02:42"}
|
210 |
+
{"current_steps": 2060, "total_steps": 3531, "loss": 0.0009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.858862701051791e-05, "epoch": 1.75, "percentage": 58.34, "elapsed_time": "2:50:42", "remaining_time": "2:01:54"}
|
211 |
+
{"current_steps": 2070, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8373893105610356e-05, "epoch": 1.76, "percentage": 58.62, "elapsed_time": "2:51:24", "remaining_time": "2:00:58"}
|
212 |
+
{"current_steps": 2080, "total_steps": 3531, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.815968371808273e-05, "epoch": 1.77, "percentage": 58.91, "elapsed_time": "2:52:07", "remaining_time": "2:00:04"}
|
213 |
+
{"current_steps": 2090, "total_steps": 3531, "loss": 0.0138, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7946015804580688e-05, "epoch": 1.78, "percentage": 59.19, "elapsed_time": "2:52:59", "remaining_time": "1:59:16"}
|
214 |
+
{"current_steps": 2100, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7732906278887225e-05, "epoch": 1.78, "percentage": 59.47, "elapsed_time": "2:53:55", "remaining_time": "1:58:30"}
|
215 |
+
{"current_steps": 2110, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7520372010583815e-05, "epoch": 1.79, "percentage": 59.76, "elapsed_time": "2:54:47", "remaining_time": "1:57:43"}
|
216 |
+
{"current_steps": 2120, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7308429823714995e-05, "epoch": 1.8, "percentage": 60.04, "elapsed_time": "2:55:30", "remaining_time": "1:56:48"}
|
217 |
+
{"current_steps": 2130, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.709709649545662e-05, "epoch": 1.81, "percentage": 60.32, "elapsed_time": "2:56:15", "remaining_time": "1:55:55"}
|
218 |
+
{"current_steps": 2140, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.688638875478777e-05, "epoch": 1.82, "percentage": 60.61, "elapsed_time": "2:57:03", "remaining_time": "1:55:05"}
|
219 |
+
{"current_steps": 2150, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.66763232811665e-05, "epoch": 1.83, "percentage": 60.89, "elapsed_time": "2:57:49", "remaining_time": "1:54:13"}
|
220 |
+
{"current_steps": 2160, "total_steps": 3531, "loss": 0.012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6466916703209535e-05, "epoch": 1.84, "percentage": 61.17, "elapsed_time": "2:58:32", "remaining_time": "1:53:19"}
|
221 |
+
{"current_steps": 2170, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.625818559737592e-05, "epoch": 1.84, "percentage": 61.46, "elapsed_time": "2:59:20", "remaining_time": "1:52:29"}
|
222 |
+
{"current_steps": 2180, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.605014648665486e-05, "epoch": 1.85, "percentage": 61.74, "elapsed_time": "3:00:11", "remaining_time": "1:51:40"}
|
223 |
+
{"current_steps": 2190, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.584281583925779e-05, "epoch": 1.86, "percentage": 62.02, "elapsed_time": "3:00:56", "remaining_time": "1:50:47"}
|
224 |
+
{"current_steps": 2200, "total_steps": 3531, "loss": 0.0126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5636210067314744e-05, "epoch": 1.87, "percentage": 62.31, "elapsed_time": "3:01:41", "remaining_time": "1:49:55"}
|
225 |
+
{"current_steps": 2210, "total_steps": 3531, "loss": 0.0015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5430345525575186e-05, "epoch": 1.88, "percentage": 62.59, "elapsed_time": "3:02:31", "remaining_time": "1:49:06"}
|
226 |
+
{"current_steps": 2220, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5225238510113377e-05, "epoch": 1.89, "percentage": 62.87, "elapsed_time": "3:03:17", "remaining_time": "1:48:14"}
|
227 |
+
{"current_steps": 2230, "total_steps": 3531, "loss": 0.0057, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5020905257038403e-05, "epoch": 1.89, "percentage": 63.15, "elapsed_time": "3:04:14", "remaining_time": "1:47:29"}
|
228 |
+
{"current_steps": 2240, "total_steps": 3531, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.481736194120894e-05, "epoch": 1.9, "percentage": 63.44, "elapsed_time": "3:04:58", "remaining_time": "1:46:36"}
|
229 |
+
{"current_steps": 2250, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4614624674952842e-05, "epoch": 1.91, "percentage": 63.72, "elapsed_time": "3:05:56", "remaining_time": "1:45:52"}
|
230 |
+
{"current_steps": 2260, "total_steps": 3531, "loss": 0.0054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4412709506791725e-05, "epoch": 1.92, "percentage": 64.0, "elapsed_time": "3:06:46", "remaining_time": "1:45:02"}
|
231 |
+
{"current_steps": 2270, "total_steps": 3531, "loss": 0.0039, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4211632420170558e-05, "epoch": 1.93, "percentage": 64.29, "elapsed_time": "3:07:38", "remaining_time": "1:44:14"}
|
232 |
+
{"current_steps": 2280, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4011409332192472e-05, "epoch": 1.94, "percentage": 64.57, "elapsed_time": "3:08:26", "remaining_time": "1:43:23"}
|
233 |
+
{"current_steps": 2290, "total_steps": 3531, "loss": 0.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3812056092358686e-05, "epoch": 1.95, "percentage": 64.85, "elapsed_time": "3:09:13", "remaining_time": "1:42:32"}
|
234 |
+
{"current_steps": 2300, "total_steps": 3531, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3613588481313977e-05, "epoch": 1.95, "percentage": 65.14, "elapsed_time": "3:10:01", "remaining_time": "1:41:42"}
|
235 |
+
{"current_steps": 2310, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3416022209597429e-05, "epoch": 1.96, "percentage": 65.42, "elapsed_time": "3:10:49", "remaining_time": "1:40:51"}
|
236 |
+
{"current_steps": 2320, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3219372916398826e-05, "epoch": 1.97, "percentage": 65.7, "elapsed_time": "3:11:36", "remaining_time": "1:40:00"}
|
237 |
+
{"current_steps": 2330, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.302365616832063e-05, "epoch": 1.98, "percentage": 65.99, "elapsed_time": "3:12:23", "remaining_time": "1:39:10"}
|
238 |
+
{"current_steps": 2340, "total_steps": 3531, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2828887458145806e-05, "epoch": 1.99, "percentage": 66.27, "elapsed_time": "3:13:16", "remaining_time": "1:38:22"}
|
239 |
+
{"current_steps": 2350, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2635082203611375e-05, "epoch": 2.0, "percentage": 66.55, "elapsed_time": "3:14:02", "remaining_time": "1:37:31"}
|
240 |
+
{"current_steps": 2360, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2442255746187954e-05, "epoch": 2.01, "percentage": 66.84, "elapsed_time": "3:14:42", "remaining_time": "1:36:36"}
|
241 |
+
{"current_steps": 2370, "total_steps": 3531, "loss": 0.0009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2250423349865387e-05, "epoch": 2.01, "percentage": 67.12, "elapsed_time": "3:15:30", "remaining_time": "1:35:46"}
|
242 |
+
{"current_steps": 2380, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2059600199944388e-05, "epoch": 2.02, "percentage": 67.4, "elapsed_time": "3:16:18", "remaining_time": "1:34:56"}
|
243 |
+
{"current_steps": 2390, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1869801401834564e-05, "epoch": 2.03, "percentage": 67.69, "elapsed_time": "3:17:04", "remaining_time": "1:34:04"}
|
244 |
+
{"current_steps": 2400, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1681041979858626e-05, "epoch": 2.04, "percentage": 67.97, "elapsed_time": "3:17:46", "remaining_time": "1:33:12"}
|
245 |
+
{"current_steps": 2410, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1493336876063071e-05, "epoch": 2.05, "percentage": 68.25, "elapsed_time": "3:18:28", "remaining_time": "1:32:19"}
|
246 |
+
{"current_steps": 2420, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1306700949035462e-05, "epoch": 2.06, "percentage": 68.54, "elapsed_time": "3:19:11", "remaining_time": "1:31:26"}
|
247 |
+
{"current_steps": 2430, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1121148972728104e-05, "epoch": 2.06, "percentage": 68.82, "elapsed_time": "3:20:00", "remaining_time": "1:30:37"}
|
248 |
+
{"current_steps": 2440, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0936695635288674e-05, "epoch": 2.07, "percentage": 69.1, "elapsed_time": "3:20:45", "remaining_time": "1:29:46"}
|
249 |
+
{"current_steps": 2450, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0753355537897427e-05, "epoch": 2.08, "percentage": 69.39, "elapsed_time": "3:21:37", "remaining_time": "1:28:57"}
|
250 |
+
{"current_steps": 2460, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0571143193611444e-05, "epoch": 2.09, "percentage": 69.67, "elapsed_time": "3:22:27", "remaining_time": "1:28:08"}
|
251 |
+
{"current_steps": 2470, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.039007302621576e-05, "epoch": 2.1, "percentage": 69.95, "elapsed_time": "3:23:12", "remaining_time": "1:27:17"}
|
252 |
+
{"current_steps": 2480, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0210159369081568e-05, "epoch": 2.11, "percentage": 70.24, "elapsed_time": "3:24:04", "remaining_time": "1:26:29"}
|
253 |
+
{"current_steps": 2490, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0031416464031654e-05, "epoch": 2.12, "percentage": 70.52, "elapsed_time": "3:24:52", "remaining_time": "1:25:38"}
|
254 |
+
{"current_steps": 2500, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.853858460212962e-06, "epoch": 2.12, "percentage": 70.8, "elapsed_time": "3:25:44", "remaining_time": "1:24:50"}
|
255 |
+
{"current_steps": 2500, "total_steps": 3531, "loss": null, "eval_loss": 0.012909023091197014, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.12, "percentage": 70.8, "elapsed_time": "3:25:44", "remaining_time": "1:24:50"}
|
256 |
+
{"current_steps": 2510, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.677499412976632e-06, "epoch": 2.13, "percentage": 71.08, "elapsed_time": "3:27:55", "remaining_time": "1:24:34"}
|
257 |
+
{"current_steps": 2520, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.502353282765306e-06, "epoch": 2.14, "percentage": 71.37, "elapsed_time": "3:28:45", "remaining_time": "1:23:45"}
|
258 |
+
{"current_steps": 2530, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.328433934008107e-06, "epoch": 2.15, "percentage": 71.65, "elapsed_time": "3:29:37", "remaining_time": "1:22:56"}
|
259 |
+
{"current_steps": 2540, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.155755134023097e-06, "epoch": 2.16, "percentage": 71.93, "elapsed_time": "3:30:22", "remaining_time": "1:22:04"}
|
260 |
+
{"current_steps": 2550, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.984330551927475e-06, "epoch": 2.17, "percentage": 72.22, "elapsed_time": "3:31:15", "remaining_time": "1:21:16"}
|
261 |
+
{"current_steps": 2560, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.81417375755556e-06, "epoch": 2.18, "percentage": 72.5, "elapsed_time": "3:32:03", "remaining_time": "1:20:26"}
|
262 |
+
{"current_steps": 2570, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.645298220384567e-06, "epoch": 2.18, "percentage": 72.78, "elapsed_time": "3:32:53", "remaining_time": "1:19:36"}
|
263 |
+
{"current_steps": 2580, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.477717308468442e-06, "epoch": 2.19, "percentage": 73.07, "elapsed_time": "3:33:38", "remaining_time": "1:18:45"}
|
264 |
+
{"current_steps": 2590, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.31144428737958e-06, "epoch": 2.2, "percentage": 73.35, "elapsed_time": "3:34:33", "remaining_time": "1:17:57"}
|
265 |
+
{"current_steps": 2600, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.146492319158805e-06, "epoch": 2.21, "percentage": 73.63, "elapsed_time": "3:35:24", "remaining_time": "1:17:08"}
|
266 |
+
{"current_steps": 2610, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.982874461273438e-06, "epoch": 2.22, "percentage": 73.92, "elapsed_time": "3:36:10", "remaining_time": "1:16:16"}
|
267 |
+
{"current_steps": 2620, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.820603665583654e-06, "epoch": 2.23, "percentage": 74.2, "elapsed_time": "3:36:52", "remaining_time": "1:15:24"}
|
268 |
+
{"current_steps": 2630, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.659692777317288e-06, "epoch": 2.23, "percentage": 74.48, "elapsed_time": "3:37:41", "remaining_time": "1:14:34"}
|
269 |
+
{"current_steps": 2640, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.500154534052933e-06, "epoch": 2.24, "percentage": 74.77, "elapsed_time": "3:38:26", "remaining_time": "1:13:43"}
|
270 |
+
{"current_steps": 2650, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.342001564711756e-06, "epoch": 2.25, "percentage": 75.05, "elapsed_time": "3:39:20", "remaining_time": "1:12:55"}
|
271 |
+
{"current_steps": 2660, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.185246388557665e-06, "epoch": 2.26, "percentage": 75.33, "elapsed_time": "3:40:10", "remaining_time": "1:12:05"}
|
272 |
+
{"current_steps": 2670, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.0299014142064106e-06, "epoch": 2.27, "percentage": 75.62, "elapsed_time": "3:40:57", "remaining_time": "1:11:15"}
|
273 |
+
{"current_steps": 2680, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.875978938643277e-06, "epoch": 2.28, "percentage": 75.9, "elapsed_time": "3:41:52", "remaining_time": "1:10:27"}
|
274 |
+
{"current_steps": 2690, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.723491146249647e-06, "epoch": 2.29, "percentage": 76.18, "elapsed_time": "3:42:34", "remaining_time": "1:09:35"}
|
275 |
+
{"current_steps": 2700, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.572450107838551e-06, "epoch": 2.29, "percentage": 76.47, "elapsed_time": "3:43:23", "remaining_time": "1:08:45"}
|
276 |
+
{"current_steps": 2710, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.422867779699088e-06, "epoch": 2.3, "percentage": 76.75, "elapsed_time": "3:44:05", "remaining_time": "1:07:53"}
|
277 |
+
{"current_steps": 2720, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.274756002650034e-06, "epoch": 2.31, "percentage": 77.03, "elapsed_time": "3:44:50", "remaining_time": "1:07:02"}
|
278 |
+
{"current_steps": 2730, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.128126501102479e-06, "epoch": 2.32, "percentage": 77.32, "elapsed_time": "3:45:42", "remaining_time": "1:06:13"}
|
279 |
+
{"current_steps": 2740, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.982990882131775e-06, "epoch": 2.33, "percentage": 77.6, "elapsed_time": "3:46:27", "remaining_time": "1:05:22"}
|
280 |
+
{"current_steps": 2750, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.83936063455871e-06, "epoch": 2.34, "percentage": 77.88, "elapsed_time": "3:47:12", "remaining_time": "1:04:31"}
|
281 |
+
{"current_steps": 2760, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.697247128040037e-06, "epoch": 2.34, "percentage": 78.16, "elapsed_time": "3:47:54", "remaining_time": "1:03:39"}
|
282 |
+
{"current_steps": 2770, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.556661612168537e-06, "epoch": 2.35, "percentage": 78.45, "elapsed_time": "3:48:41", "remaining_time": "1:02:49"}
|
283 |
+
{"current_steps": 2780, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.417615215582408e-06, "epoch": 2.36, "percentage": 78.73, "elapsed_time": "3:49:41", "remaining_time": "1:02:02"}
|
284 |
+
{"current_steps": 2790, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.280118945084422e-06, "epoch": 2.37, "percentage": 79.01, "elapsed_time": "3:50:25", "remaining_time": "1:01:12"}
|
285 |
+
{"current_steps": 2800, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.144183684770565e-06, "epoch": 2.38, "percentage": 79.3, "elapsed_time": "3:51:18", "remaining_time": "1:00:23"}
|
286 |
+
{"current_steps": 2810, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.00982019516851e-06, "epoch": 2.39, "percentage": 79.58, "elapsed_time": "3:52:07", "remaining_time": "0:59:33"}
|
287 |
+
{"current_steps": 2820, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.877039112385815e-06, "epoch": 2.4, "percentage": 79.86, "elapsed_time": "3:52:53", "remaining_time": "0:58:43"}
|
288 |
+
{"current_steps": 2830, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.74585094726793e-06, "epoch": 2.4, "percentage": 80.15, "elapsed_time": "3:53:40", "remaining_time": "0:57:53"}
|
289 |
+
{"current_steps": 2840, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.616266084566243e-06, "epoch": 2.41, "percentage": 80.43, "elapsed_time": "3:54:29", "remaining_time": "0:57:03"}
|
290 |
+
{"current_steps": 2850, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.488294782115957e-06, "epoch": 2.42, "percentage": 80.71, "elapsed_time": "3:55:14", "remaining_time": "0:56:12"}
|
291 |
+
{"current_steps": 2860, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.361947170024144e-06, "epoch": 2.43, "percentage": 81.0, "elapsed_time": "3:55:58", "remaining_time": "0:55:21"}
|
292 |
+
{"current_steps": 2870, "total_steps": 3531, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2372332498678256e-06, "epoch": 2.44, "percentage": 81.28, "elapsed_time": "3:56:48", "remaining_time": "0:54:32"}
|
293 |
+
{"current_steps": 2880, "total_steps": 3531, "loss": 0.0061, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.11416289390226e-06, "epoch": 2.45, "percentage": 81.56, "elapsed_time": "3:57:34", "remaining_time": "0:53:42"}
|
294 |
+
{"current_steps": 2890, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.992745844279475e-06, "epoch": 2.46, "percentage": 81.85, "elapsed_time": "3:58:24", "remaining_time": "0:52:52"}
|
295 |
+
{"current_steps": 2900, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.872991712277052e-06, "epoch": 2.46, "percentage": 82.13, "elapsed_time": "3:59:17", "remaining_time": "0:52:04"}
|
296 |
+
{"current_steps": 2910, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7549099775373576e-06, "epoch": 2.47, "percentage": 82.41, "elapsed_time": "4:00:03", "remaining_time": "0:51:13"}
|
297 |
+
{"current_steps": 2920, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6385099873170875e-06, "epoch": 2.48, "percentage": 82.7, "elapsed_time": "4:00:53", "remaining_time": "0:50:24"}
|
298 |
+
{"current_steps": 2930, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5238009557473946e-06, "epoch": 2.49, "percentage": 82.98, "elapsed_time": "4:01:40", "remaining_time": "0:49:34"}
|
299 |
+
{"current_steps": 2940, "total_steps": 3531, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4107919631044732e-06, "epoch": 2.5, "percentage": 83.26, "elapsed_time": "4:02:24", "remaining_time": "0:48:43"}
|
300 |
+
{"current_steps": 2950, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.299491955090775e-06, "epoch": 2.51, "percentage": 83.55, "elapsed_time": "4:03:11", "remaining_time": "0:47:53"}
|
301 |
+
{"current_steps": 2960, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1899097421268924e-06, "epoch": 2.51, "percentage": 83.83, "elapsed_time": "4:03:55", "remaining_time": "0:47:03"}
|
302 |
+
{"current_steps": 2970, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0820539986541054e-06, "epoch": 2.52, "percentage": 84.11, "elapsed_time": "4:04:54", "remaining_time": "0:46:15"}
|
303 |
+
{"current_steps": 2980, "total_steps": 3531, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.97593326244775e-06, "epoch": 2.53, "percentage": 84.4, "elapsed_time": "4:05:45", "remaining_time": "0:45:26"}
|
304 |
+
{"current_steps": 2990, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.871555933941353e-06, "epoch": 2.54, "percentage": 84.68, "elapsed_time": "4:06:33", "remaining_time": "0:44:36"}
|
305 |
+
{"current_steps": 3000, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7689302755616736e-06, "epoch": 2.55, "percentage": 84.96, "elapsed_time": "4:07:27", "remaining_time": "0:43:47"}
|
306 |
+
{"current_steps": 3000, "total_steps": 3531, "loss": null, "eval_loss": 0.014460938051342964, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.55, "percentage": 84.96, "elapsed_time": "4:07:27", "remaining_time": "0:43:47"}
|
307 |
+
{"current_steps": 3010, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6680644110746305e-06, "epoch": 2.56, "percentage": 85.24, "elapsed_time": "4:09:41", "remaining_time": "0:43:13"}
|
308 |
+
{"current_steps": 3020, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.568966324942268e-06, "epoch": 2.57, "percentage": 85.53, "elapsed_time": "4:10:32", "remaining_time": "0:42:23"}
|
309 |
+
{"current_steps": 3030, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4716438616906977e-06, "epoch": 2.57, "percentage": 85.81, "elapsed_time": "4:11:22", "remaining_time": "0:41:33"}
|
310 |
+
{"current_steps": 3040, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.376104725289105e-06, "epoch": 2.58, "percentage": 86.09, "elapsed_time": "4:12:05", "remaining_time": "0:40:43"}
|
311 |
+
{"current_steps": 3050, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2823564785399596e-06, "epoch": 2.59, "percentage": 86.38, "elapsed_time": "4:13:01", "remaining_time": "0:39:54"}
|
312 |
+
{"current_steps": 3060, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1904065424803e-06, "epoch": 2.6, "percentage": 86.66, "elapsed_time": "4:13:47", "remaining_time": "0:39:03"}
|
313 |
+
{"current_steps": 3070, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1002621957943308e-06, "epoch": 2.61, "percentage": 86.94, "elapsed_time": "4:14:42", "remaining_time": "0:38:14"}
|
314 |
+
{"current_steps": 3080, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.011930574237228e-06, "epoch": 2.62, "percentage": 87.23, "elapsed_time": "4:15:32", "remaining_time": "0:37:25"}
|
315 |
+
{"current_steps": 3090, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.925418670070267e-06, "epoch": 2.63, "percentage": 87.51, "elapsed_time": "4:16:16", "remaining_time": "0:36:34"}
|
316 |
+
{"current_steps": 3100, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8407333315073466e-06, "epoch": 2.63, "percentage": 87.79, "elapsed_time": "4:17:03", "remaining_time": "0:35:44"}
|
317 |
+
{"current_steps": 3110, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7578812621728751e-06, "epoch": 2.64, "percentage": 88.08, "elapsed_time": "4:17:50", "remaining_time": "0:34:54"}
|
318 |
+
{"current_steps": 3120, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6768690205711173e-06, "epoch": 2.65, "percentage": 88.36, "elapsed_time": "4:18:35", "remaining_time": "0:34:03"}
|
319 |
+
{"current_steps": 3130, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5977030195670289e-06, "epoch": 2.66, "percentage": 88.64, "elapsed_time": "4:19:22", "remaining_time": "0:33:13"}
|
320 |
+
{"current_steps": 3140, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5203895258786238e-06, "epoch": 2.67, "percentage": 88.93, "elapsed_time": "4:20:10", "remaining_time": "0:32:23"}
|
321 |
+
{"current_steps": 3150, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4449346595809015e-06, "epoch": 2.68, "percentage": 89.21, "elapsed_time": "4:20:53", "remaining_time": "0:31:33"}
|
322 |
+
{"current_steps": 3160, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3713443936213822e-06, "epoch": 2.68, "percentage": 89.49, "elapsed_time": "4:21:42", "remaining_time": "0:30:43"}
|
323 |
+
{"current_steps": 3170, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.299624553347309e-06, "epoch": 2.69, "percentage": 89.78, "elapsed_time": "4:22:25", "remaining_time": "0:29:53"}
|
324 |
+
{"current_steps": 3180, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2297808160444929e-06, "epoch": 2.7, "percentage": 90.06, "elapsed_time": "4:23:19", "remaining_time": "0:29:03"}
|
325 |
+
{"current_steps": 3190, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.161818710487933e-06, "epoch": 2.71, "percentage": 90.34, "elapsed_time": "4:24:05", "remaining_time": "0:28:13"}
|
326 |
+
{"current_steps": 3200, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.095743616504144e-06, "epoch": 2.72, "percentage": 90.63, "elapsed_time": "4:24:49", "remaining_time": "0:27:23"}
|
327 |
+
{"current_steps": 3210, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0315607645452836e-06, "epoch": 2.73, "percentage": 90.91, "elapsed_time": "4:25:36", "remaining_time": "0:26:33"}
|
328 |
+
{"current_steps": 3220, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.692752352751466e-07, "epoch": 2.74, "percentage": 91.19, "elapsed_time": "4:26:24", "remaining_time": "0:25:43"}
|
329 |
+
{"current_steps": 3230, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.088919591669548e-07, "epoch": 2.74, "percentage": 91.48, "elapsed_time": "4:27:12", "remaining_time": "0:24:54"}
|
330 |
+
{"current_steps": 3240, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.504157161130788e-07, "epoch": 2.75, "percentage": 91.76, "elapsed_time": "4:27:58", "remaining_time": "0:24:04"}
|
331 |
+
{"current_steps": 3250, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.938511350466527e-07, "epoch": 2.76, "percentage": 92.04, "elapsed_time": "4:28:44", "remaining_time": "0:23:14"}
|
332 |
+
{"current_steps": 3260, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.39202693575175e-07, "epoch": 2.77, "percentage": 92.33, "elapsed_time": "4:29:27", "remaining_time": "0:22:23"}
|
333 |
+
{"current_steps": 3270, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.864747176260289e-07, "epoch": 2.78, "percentage": 92.61, "elapsed_time": "4:30:13", "remaining_time": "0:21:34"}
|
334 |
+
{"current_steps": 3280, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.356713811040888e-07, "epoch": 2.79, "percentage": 92.89, "elapsed_time": "4:30:57", "remaining_time": "0:20:44"}
|
335 |
+
{"current_steps": 3290, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.867967055612794e-07, "epoch": 2.8, "percentage": 93.17, "elapsed_time": "4:31:45", "remaining_time": "0:19:54"}
|
336 |
+
{"current_steps": 3300, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.398545598782528e-07, "epoch": 2.8, "percentage": 93.46, "elapsed_time": "4:32:27", "remaining_time": "0:19:04"}
|
337 |
+
{"current_steps": 3310, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.948486599581276e-07, "epoch": 2.81, "percentage": 93.74, "elapsed_time": "4:33:19", "remaining_time": "0:18:14"}
|
338 |
+
{"current_steps": 3320, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.517825684323324e-07, "epoch": 2.82, "percentage": 94.02, "elapsed_time": "4:34:17", "remaining_time": "0:17:25"}
|
339 |
+
{"current_steps": 3330, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1065969437860954e-07, "epoch": 2.83, "percentage": 94.31, "elapsed_time": "4:35:05", "remaining_time": "0:16:36"}
|
340 |
+
{"current_steps": 3340, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.714832930511336e-07, "epoch": 2.84, "percentage": 94.59, "elapsed_time": "4:35:51", "remaining_time": "0:15:46"}
|
341 |
+
{"current_steps": 3350, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.342564656228453e-07, "epoch": 2.85, "percentage": 94.87, "elapsed_time": "4:36:36", "remaining_time": "0:14:56"}
|
342 |
+
{"current_steps": 3360, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9898215893995054e-07, "epoch": 2.85, "percentage": 95.16, "elapsed_time": "4:37:31", "remaining_time": "0:14:07"}
|
343 |
+
{"current_steps": 3370, "total_steps": 3531, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6566316528866264e-07, "epoch": 2.86, "percentage": 95.44, "elapsed_time": "4:38:14", "remaining_time": "0:13:17"}
|
344 |
+
{"current_steps": 3380, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3430212217415982e-07, "epoch": 2.87, "percentage": 95.72, "elapsed_time": "4:38:59", "remaining_time": "0:12:27"}
|
345 |
+
{"current_steps": 3390, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0490151211180752e-07, "epoch": 2.88, "percentage": 96.01, "elapsed_time": "4:39:52", "remaining_time": "0:11:38"}
|
346 |
+
{"current_steps": 3400, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7746366243063806e-07, "epoch": 2.89, "percentage": 96.29, "elapsed_time": "4:40:40", "remaining_time": "0:10:48"}
|
347 |
+
{"current_steps": 3410, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5199074508912836e-07, "epoch": 2.9, "percentage": 96.57, "elapsed_time": "4:41:31", "remaining_time": "0:09:59"}
|
348 |
+
{"current_steps": 3420, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2848477650325984e-07, "epoch": 2.91, "percentage": 96.86, "elapsed_time": "4:42:20", "remaining_time": "0:09:09"}
|
349 |
+
{"current_steps": 3430, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.069476173869155e-07, "epoch": 2.91, "percentage": 97.14, "elapsed_time": "4:43:11", "remaining_time": "0:08:20"}
|
350 |
+
{"current_steps": 3440, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.738097260456713e-08, "epoch": 2.92, "percentage": 97.42, "elapsed_time": "4:43:55", "remaining_time": "0:07:30"}
|
351 |
+
{"current_steps": 3450, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.978639103634444e-08, "epoch": 2.93, "percentage": 97.71, "elapsed_time": "4:44:49", "remaining_time": "0:06:41"}
|
352 |
+
{"current_steps": 3460, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.41652654553998e-08, "epoch": 2.94, "percentage": 97.99, "elapsed_time": "4:45:32", "remaining_time": "0:05:51"}
|
353 |
+
{"current_steps": 3470, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.051883241767973e-08, "epoch": 2.95, "percentage": 98.27, "elapsed_time": "4:46:21", "remaining_time": "0:05:02"}
|
354 |
+
{"current_steps": 3480, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8848172164025465e-08, "epoch": 2.96, "percentage": 98.56, "elapsed_time": "4:47:10", "remaining_time": "0:04:12"}
|
355 |
+
{"current_steps": 3490, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.915420853467187e-08, "epoch": 2.97, "percentage": 98.84, "elapsed_time": "4:47:58", "remaining_time": "0:03:22"}
|
356 |
+
{"current_steps": 3500, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1437708896108733e-08, "epoch": 2.97, "percentage": 99.12, "elapsed_time": "4:48:43", "remaining_time": "0:02:33"}
|
357 |
+
{"current_steps": 3500, "total_steps": 3531, "loss": null, "eval_loss": 0.014973307959735394, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.97, "percentage": 99.12, "elapsed_time": "4:48:43", "remaining_time": "0:02:33"}
|
358 |
+
{"current_steps": 3510, "total_steps": 3531, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.1840990213946074e-09, "epoch": 2.98, "percentage": 99.41, "elapsed_time": "4:50:58", "remaining_time": "0:01:44"}
|
359 |
+
{"current_steps": 3520, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2263343925993386e-09, "epoch": 2.99, "percentage": 99.69, "elapsed_time": "4:51:45", "remaining_time": "0:00:54"}
|
360 |
+
{"current_steps": 3530, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4737375172445563e-10, "epoch": 3.0, "percentage": 99.97, "elapsed_time": "4:52:34", "remaining_time": "0:00:04"}
|
361 |
+
{"current_steps": 3531, "total_steps": 3531, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "4:52:40", "remaining_time": "0:00:00"}
|
362 |
+
{"current_steps": 248, "total_steps": 248, "loss": null, "eval_loss": 0.014986271038651466, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "4:54:08", "remaining_time": "0:00:00"}
|
LLM-Detector-V1-4w/trainer_state.json
ADDED
@@ -0,0 +1,2202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3531,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999919851200522e-05,
|
14 |
+
"loss": 9.9461,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9996428002198536e-05,
|
20 |
+
"loss": 6.4908,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 4.9992242747551964e-05,
|
26 |
+
"loss": 3.708,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.99857130295276e-05,
|
32 |
+
"loss": 0.8908,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04,
|
37 |
+
"learning_rate": 4.997720546222574e-05,
|
38 |
+
"loss": 0.2454,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.05,
|
43 |
+
"learning_rate": 4.996672071909866e-05,
|
44 |
+
"loss": 0.1348,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"learning_rate": 4.995425963011034e-05,
|
50 |
+
"loss": 0.0487,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"learning_rate": 4.993982318167074e-05,
|
56 |
+
"loss": 0.0282,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 4.992341251655768e-05,
|
62 |
+
"loss": 0.0455,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.08,
|
67 |
+
"learning_rate": 4.9905028933826435e-05,
|
68 |
+
"loss": 0.0472,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.09,
|
73 |
+
"learning_rate": 4.988467388870688e-05,
|
74 |
+
"loss": 0.0526,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.1,
|
79 |
+
"learning_rate": 4.986234899248826e-05,
|
80 |
+
"loss": 0.0679,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.11,
|
85 |
+
"learning_rate": 4.983805601239172e-05,
|
86 |
+
"loss": 0.0314,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.12,
|
91 |
+
"learning_rate": 4.981179687143034e-05,
|
92 |
+
"loss": 0.0136,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.13,
|
97 |
+
"learning_rate": 4.978357364825695e-05,
|
98 |
+
"loss": 0.0409,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.14,
|
103 |
+
"learning_rate": 4.975338857699956e-05,
|
104 |
+
"loss": 0.0284,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.14,
|
109 |
+
"learning_rate": 4.972124404708454e-05,
|
110 |
+
"loss": 0.0364,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.15,
|
115 |
+
"learning_rate": 4.968714260304743e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.16,
|
121 |
+
"learning_rate": 4.965108694433159e-05,
|
122 |
+
"loss": 0.0174,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.17,
|
127 |
+
"learning_rate": 4.961307992507443e-05,
|
128 |
+
"loss": 0.0244,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.18,
|
133 |
+
"learning_rate": 4.957312455388152e-05,
|
134 |
+
"loss": 0.0387,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.19,
|
139 |
+
"learning_rate": 4.953122399358845e-05,
|
140 |
+
"loss": 0.0264,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.2,
|
145 |
+
"learning_rate": 4.948738156101042e-05,
|
146 |
+
"loss": 0.0291,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.2,
|
151 |
+
"learning_rate": 4.9441600726679694e-05,
|
152 |
+
"loss": 0.0214,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.21,
|
157 |
+
"learning_rate": 4.939388511457092e-05,
|
158 |
+
"loss": 0.0116,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.22,
|
163 |
+
"learning_rate": 4.934423850181419e-05,
|
164 |
+
"loss": 0.0191,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.23,
|
169 |
+
"learning_rate": 4.9292664818396117e-05,
|
170 |
+
"loss": 0.0064,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.24,
|
175 |
+
"learning_rate": 4.9239168146848666e-05,
|
176 |
+
"loss": 0.0184,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.25,
|
181 |
+
"learning_rate": 4.9183752721926036e-05,
|
182 |
+
"loss": 0.0026,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.25,
|
187 |
+
"learning_rate": 4.912642293026942e-05,
|
188 |
+
"loss": 0.0223,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.26,
|
193 |
+
"learning_rate": 4.906718331005979e-05,
|
194 |
+
"loss": 0.0405,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.27,
|
199 |
+
"learning_rate": 4.900603855065861e-05,
|
200 |
+
"loss": 0.0461,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.28,
|
205 |
+
"learning_rate": 4.894299349223665e-05,
|
206 |
+
"loss": 0.0199,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.29,
|
211 |
+
"learning_rate": 4.8878053125390875e-05,
|
212 |
+
"loss": 0.0193,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.3,
|
217 |
+
"learning_rate": 4.881122259074935e-05,
|
218 |
+
"loss": 0.004,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.31,
|
223 |
+
"learning_rate": 4.874250717856433e-05,
|
224 |
+
"loss": 0.0018,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.31,
|
229 |
+
"learning_rate": 4.867191232829348e-05,
|
230 |
+
"loss": 0.0021,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.32,
|
235 |
+
"learning_rate": 4.8599443628169295e-05,
|
236 |
+
"loss": 0.018,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.33,
|
241 |
+
"learning_rate": 4.8525106814756754e-05,
|
242 |
+
"loss": 0.0261,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.34,
|
247 |
+
"learning_rate": 4.84489077724992e-05,
|
248 |
+
"loss": 0.016,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.35,
|
253 |
+
"learning_rate": 4.8370852533252536e-05,
|
254 |
+
"loss": 0.0402,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.36,
|
259 |
+
"learning_rate": 4.8290947275807755e-05,
|
260 |
+
"loss": 0.0038,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.37,
|
265 |
+
"learning_rate": 4.8209198325401815e-05,
|
266 |
+
"loss": 0.008,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.37,
|
271 |
+
"learning_rate": 4.8125612153216976e-05,
|
272 |
+
"loss": 0.0296,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.38,
|
277 |
+
"learning_rate": 4.804019537586849e-05,
|
278 |
+
"loss": 0.0012,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.39,
|
283 |
+
"learning_rate": 4.7952954754880886e-05,
|
284 |
+
"loss": 0.0142,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.4,
|
289 |
+
"learning_rate": 4.7863897196152704e-05,
|
290 |
+
"loss": 0.0163,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.41,
|
295 |
+
"learning_rate": 4.7773029749409836e-05,
|
296 |
+
"loss": 0.0021,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.42,
|
301 |
+
"learning_rate": 4.76803596076475e-05,
|
302 |
+
"loss": 0.0355,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.42,
|
307 |
+
"learning_rate": 4.758589410656078e-05,
|
308 |
+
"loss": 0.0199,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.42,
|
313 |
+
"eval_loss": 0.010466881096363068,
|
314 |
+
"eval_runtime": 88.037,
|
315 |
+
"eval_samples_per_second": 22.525,
|
316 |
+
"eval_steps_per_second": 2.817,
|
317 |
+
"step": 500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"learning_rate": 4.748964072396403e-05,
|
322 |
+
"loss": 0.0341,
|
323 |
+
"step": 510
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.44,
|
327 |
+
"learning_rate": 4.7391607079198876e-05,
|
328 |
+
"loss": 0.0137,
|
329 |
+
"step": 520
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.45,
|
333 |
+
"learning_rate": 4.7291800932531064e-05,
|
334 |
+
"loss": 0.0138,
|
335 |
+
"step": 530
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.46,
|
339 |
+
"learning_rate": 4.719023018453623e-05,
|
340 |
+
"loss": 0.0063,
|
341 |
+
"step": 540
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.47,
|
345 |
+
"learning_rate": 4.708690287547441e-05,
|
346 |
+
"loss": 0.0376,
|
347 |
+
"step": 550
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.48,
|
351 |
+
"learning_rate": 4.698182718465368e-05,
|
352 |
+
"loss": 0.006,
|
353 |
+
"step": 560
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.48,
|
357 |
+
"learning_rate": 4.687501142978258e-05,
|
358 |
+
"loss": 0.0371,
|
359 |
+
"step": 570
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.49,
|
363 |
+
"learning_rate": 4.6766464066311765e-05,
|
364 |
+
"loss": 0.0322,
|
365 |
+
"step": 580
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.5,
|
369 |
+
"learning_rate": 4.665619368676466e-05,
|
370 |
+
"loss": 0.0086,
|
371 |
+
"step": 590
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.51,
|
375 |
+
"learning_rate": 4.6544209020057285e-05,
|
376 |
+
"loss": 0.002,
|
377 |
+
"step": 600
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.52,
|
381 |
+
"learning_rate": 4.643051893080725e-05,
|
382 |
+
"loss": 0.0147,
|
383 |
+
"step": 610
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.53,
|
387 |
+
"learning_rate": 4.631513241863209e-05,
|
388 |
+
"loss": 0.0038,
|
389 |
+
"step": 620
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.54,
|
393 |
+
"learning_rate": 4.619805861743683e-05,
|
394 |
+
"loss": 0.0187,
|
395 |
+
"step": 630
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.54,
|
399 |
+
"learning_rate": 4.607930679469096e-05,
|
400 |
+
"loss": 0.0063,
|
401 |
+
"step": 640
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.55,
|
405 |
+
"learning_rate": 4.595888635069481e-05,
|
406 |
+
"loss": 0.0109,
|
407 |
+
"step": 650
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.56,
|
411 |
+
"learning_rate": 4.5836806817835475e-05,
|
412 |
+
"loss": 0.005,
|
413 |
+
"step": 660
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.57,
|
417 |
+
"learning_rate": 4.57130778598322e-05,
|
418 |
+
"loss": 0.0167,
|
419 |
+
"step": 670
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.58,
|
423 |
+
"learning_rate": 4.5587709270971425e-05,
|
424 |
+
"loss": 0.0143,
|
425 |
+
"step": 680
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.59,
|
429 |
+
"learning_rate": 4.546071097533145e-05,
|
430 |
+
"loss": 0.0015,
|
431 |
+
"step": 690
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.59,
|
435 |
+
"learning_rate": 4.533209302599691e-05,
|
436 |
+
"loss": 0.0003,
|
437 |
+
"step": 700
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.6,
|
441 |
+
"learning_rate": 4.520186560426292e-05,
|
442 |
+
"loss": 0.006,
|
443 |
+
"step": 710
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.61,
|
447 |
+
"learning_rate": 4.507003901882915e-05,
|
448 |
+
"loss": 0.0093,
|
449 |
+
"step": 720
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.62,
|
453 |
+
"learning_rate": 4.493662370498383e-05,
|
454 |
+
"loss": 0.0046,
|
455 |
+
"step": 730
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.63,
|
459 |
+
"learning_rate": 4.4801630223777665e-05,
|
460 |
+
"loss": 0.0147,
|
461 |
+
"step": 740
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.64,
|
465 |
+
"learning_rate": 4.466506926118782e-05,
|
466 |
+
"loss": 0.0102,
|
467 |
+
"step": 750
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.65,
|
471 |
+
"learning_rate": 4.4526951627272074e-05,
|
472 |
+
"loss": 0.017,
|
473 |
+
"step": 760
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.65,
|
477 |
+
"learning_rate": 4.438728825531305e-05,
|
478 |
+
"loss": 0.0033,
|
479 |
+
"step": 770
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.66,
|
483 |
+
"learning_rate": 4.4246090200952816e-05,
|
484 |
+
"loss": 0.0061,
|
485 |
+
"step": 780
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.67,
|
489 |
+
"learning_rate": 4.410336864131762e-05,
|
490 |
+
"loss": 0.0032,
|
491 |
+
"step": 790
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.68,
|
495 |
+
"learning_rate": 4.395913487413324e-05,
|
496 |
+
"loss": 0.0043,
|
497 |
+
"step": 800
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.69,
|
501 |
+
"learning_rate": 4.3813400316830576e-05,
|
502 |
+
"loss": 0.0063,
|
503 |
+
"step": 810
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.7,
|
507 |
+
"learning_rate": 4.36661765056419e-05,
|
508 |
+
"loss": 0.0273,
|
509 |
+
"step": 820
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.71,
|
513 |
+
"learning_rate": 4.351747509468763e-05,
|
514 |
+
"loss": 0.0125,
|
515 |
+
"step": 830
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.71,
|
519 |
+
"learning_rate": 4.336730785505382e-05,
|
520 |
+
"loss": 0.0076,
|
521 |
+
"step": 840
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.72,
|
525 |
+
"learning_rate": 4.3215686673860384e-05,
|
526 |
+
"loss": 0.0127,
|
527 |
+
"step": 850
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.73,
|
531 |
+
"learning_rate": 4.306262355332006e-05,
|
532 |
+
"loss": 0.0161,
|
533 |
+
"step": 860
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.74,
|
537 |
+
"learning_rate": 4.290813060978839e-05,
|
538 |
+
"loss": 0.0169,
|
539 |
+
"step": 870
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.75,
|
543 |
+
"learning_rate": 4.2752220072804564e-05,
|
544 |
+
"loss": 0.0081,
|
545 |
+
"step": 880
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.76,
|
549 |
+
"learning_rate": 4.259490428412335e-05,
|
550 |
+
"loss": 0.0131,
|
551 |
+
"step": 890
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.76,
|
555 |
+
"learning_rate": 4.243619569673814e-05,
|
556 |
+
"loss": 0.0205,
|
557 |
+
"step": 900
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.77,
|
561 |
+
"learning_rate": 4.2276106873895143e-05,
|
562 |
+
"loss": 0.0026,
|
563 |
+
"step": 910
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.78,
|
567 |
+
"learning_rate": 4.2114650488098936e-05,
|
568 |
+
"loss": 0.018,
|
569 |
+
"step": 920
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.79,
|
573 |
+
"learning_rate": 4.19518393201093e-05,
|
574 |
+
"loss": 0.0083,
|
575 |
+
"step": 930
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.8,
|
579 |
+
"learning_rate": 4.178768625792949e-05,
|
580 |
+
"loss": 0.0291,
|
581 |
+
"step": 940
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.81,
|
585 |
+
"learning_rate": 4.162220429578605e-05,
|
586 |
+
"loss": 0.0226,
|
587 |
+
"step": 950
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.82,
|
591 |
+
"learning_rate": 4.145540653310018e-05,
|
592 |
+
"loss": 0.0042,
|
593 |
+
"step": 960
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.82,
|
597 |
+
"learning_rate": 4.128730617345084e-05,
|
598 |
+
"loss": 0.0078,
|
599 |
+
"step": 970
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.83,
|
603 |
+
"learning_rate": 4.111791652352952e-05,
|
604 |
+
"loss": 0.0084,
|
605 |
+
"step": 980
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.84,
|
609 |
+
"learning_rate": 4.094725099208688e-05,
|
610 |
+
"loss": 0.0044,
|
611 |
+
"step": 990
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.85,
|
615 |
+
"learning_rate": 4.077532308887141e-05,
|
616 |
+
"loss": 0.0011,
|
617 |
+
"step": 1000
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.85,
|
621 |
+
"eval_loss": 0.01175768580287695,
|
622 |
+
"eval_runtime": 88.0904,
|
623 |
+
"eval_samples_per_second": 22.511,
|
624 |
+
"eval_steps_per_second": 2.815,
|
625 |
+
"step": 1000
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.86,
|
629 |
+
"learning_rate": 4.060214642355989e-05,
|
630 |
+
"loss": 0.0011,
|
631 |
+
"step": 1010
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 0.87,
|
635 |
+
"learning_rate": 4.042773470468016e-05,
|
636 |
+
"loss": 0.021,
|
637 |
+
"step": 1020
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 0.88,
|
641 |
+
"learning_rate": 4.0252101738525916e-05,
|
642 |
+
"loss": 0.0424,
|
643 |
+
"step": 1030
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.88,
|
647 |
+
"learning_rate": 4.0075261428063806e-05,
|
648 |
+
"loss": 0.0194,
|
649 |
+
"step": 1040
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.89,
|
653 |
+
"learning_rate": 3.9897227771832924e-05,
|
654 |
+
"loss": 0.0025,
|
655 |
+
"step": 1050
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.9,
|
659 |
+
"learning_rate": 3.971801486283665e-05,
|
660 |
+
"loss": 0.0044,
|
661 |
+
"step": 1060
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.91,
|
665 |
+
"learning_rate": 3.953763688742708e-05,
|
666 |
+
"loss": 0.0051,
|
667 |
+
"step": 1070
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.92,
|
671 |
+
"learning_rate": 3.9356108124182067e-05,
|
672 |
+
"loss": 0.0071,
|
673 |
+
"step": 1080
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.93,
|
677 |
+
"learning_rate": 3.9173442942774885e-05,
|
678 |
+
"loss": 0.0145,
|
679 |
+
"step": 1090
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.93,
|
683 |
+
"learning_rate": 3.898965580283681e-05,
|
684 |
+
"loss": 0.0371,
|
685 |
+
"step": 1100
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.94,
|
689 |
+
"learning_rate": 3.880476125281244e-05,
|
690 |
+
"loss": 0.0076,
|
691 |
+
"step": 1110
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.95,
|
695 |
+
"learning_rate": 3.861877392880808e-05,
|
696 |
+
"loss": 0.0035,
|
697 |
+
"step": 1120
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.96,
|
701 |
+
"learning_rate": 3.843170855343317e-05,
|
702 |
+
"loss": 0.008,
|
703 |
+
"step": 1130
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.97,
|
707 |
+
"learning_rate": 3.8243579934634846e-05,
|
708 |
+
"loss": 0.0089,
|
709 |
+
"step": 1140
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.98,
|
713 |
+
"learning_rate": 3.805440296452574e-05,
|
714 |
+
"loss": 0.0034,
|
715 |
+
"step": 1150
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.99,
|
719 |
+
"learning_rate": 3.786419261820514e-05,
|
720 |
+
"loss": 0.0019,
|
721 |
+
"step": 1160
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.99,
|
725 |
+
"learning_rate": 3.7672963952573614e-05,
|
726 |
+
"loss": 0.0164,
|
727 |
+
"step": 1170
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 1.0,
|
731 |
+
"learning_rate": 3.748073210514102e-05,
|
732 |
+
"loss": 0.0012,
|
733 |
+
"step": 1180
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 1.01,
|
737 |
+
"learning_rate": 3.728751229282836e-05,
|
738 |
+
"loss": 0.0072,
|
739 |
+
"step": 1190
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 1.02,
|
743 |
+
"learning_rate": 3.70933198107631e-05,
|
744 |
+
"loss": 0.0041,
|
745 |
+
"step": 1200
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 1.03,
|
749 |
+
"learning_rate": 3.689817003106852e-05,
|
750 |
+
"loss": 0.0021,
|
751 |
+
"step": 1210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.04,
|
755 |
+
"learning_rate": 3.670207840164678e-05,
|
756 |
+
"loss": 0.0024,
|
757 |
+
"step": 1220
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 1.05,
|
761 |
+
"learning_rate": 3.650506044495615e-05,
|
762 |
+
"loss": 0.0026,
|
763 |
+
"step": 1230
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.05,
|
767 |
+
"learning_rate": 3.630713175678222e-05,
|
768 |
+
"loss": 0.005,
|
769 |
+
"step": 1240
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 1.06,
|
773 |
+
"learning_rate": 3.610830800500335e-05,
|
774 |
+
"loss": 0.0069,
|
775 |
+
"step": 1250
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.07,
|
779 |
+
"learning_rate": 3.590860492835046e-05,
|
780 |
+
"loss": 0.0081,
|
781 |
+
"step": 1260
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.08,
|
785 |
+
"learning_rate": 3.5708038335161134e-05,
|
786 |
+
"loss": 0.0107,
|
787 |
+
"step": 1270
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 1.09,
|
791 |
+
"learning_rate": 3.550662410212819e-05,
|
792 |
+
"loss": 0.0074,
|
793 |
+
"step": 1280
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.1,
|
797 |
+
"learning_rate": 3.5304378173043e-05,
|
798 |
+
"loss": 0.0048,
|
799 |
+
"step": 1290
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 1.1,
|
803 |
+
"learning_rate": 3.5101316557533294e-05,
|
804 |
+
"loss": 0.0006,
|
805 |
+
"step": 1300
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.11,
|
809 |
+
"learning_rate": 3.489745532979593e-05,
|
810 |
+
"loss": 0.0076,
|
811 |
+
"step": 1310
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.12,
|
815 |
+
"learning_rate": 3.469281062732442e-05,
|
816 |
+
"loss": 0.0002,
|
817 |
+
"step": 1320
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.13,
|
821 |
+
"learning_rate": 3.448739864963154e-05,
|
822 |
+
"loss": 0.0073,
|
823 |
+
"step": 1330
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 1.14,
|
827 |
+
"learning_rate": 3.4281235656966915e-05,
|
828 |
+
"loss": 0.0008,
|
829 |
+
"step": 1340
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 1.15,
|
833 |
+
"learning_rate": 3.4074337969029965e-05,
|
834 |
+
"loss": 0.001,
|
835 |
+
"step": 1350
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.16,
|
839 |
+
"learning_rate": 3.386672196367799e-05,
|
840 |
+
"loss": 0.0047,
|
841 |
+
"step": 1360
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.16,
|
845 |
+
"learning_rate": 3.365840407562974e-05,
|
846 |
+
"loss": 0.0131,
|
847 |
+
"step": 1370
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.17,
|
851 |
+
"learning_rate": 3.3449400795164416e-05,
|
852 |
+
"loss": 0.001,
|
853 |
+
"step": 1380
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 1.18,
|
857 |
+
"learning_rate": 3.323972866681637e-05,
|
858 |
+
"loss": 0.0058,
|
859 |
+
"step": 1390
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.19,
|
863 |
+
"learning_rate": 3.3029404288065426e-05,
|
864 |
+
"loss": 0.0047,
|
865 |
+
"step": 1400
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 1.2,
|
869 |
+
"learning_rate": 3.2818444308023e-05,
|
870 |
+
"loss": 0.0029,
|
871 |
+
"step": 1410
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.21,
|
875 |
+
"learning_rate": 3.2606865426114234e-05,
|
876 |
+
"loss": 0.0073,
|
877 |
+
"step": 1420
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.21,
|
881 |
+
"learning_rate": 3.239468439075604e-05,
|
882 |
+
"loss": 0.0006,
|
883 |
+
"step": 1430
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.22,
|
887 |
+
"learning_rate": 3.2181917998031326e-05,
|
888 |
+
"loss": 0.0028,
|
889 |
+
"step": 1440
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 1.23,
|
893 |
+
"learning_rate": 3.196858309035941e-05,
|
894 |
+
"loss": 0.0003,
|
895 |
+
"step": 1450
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 1.24,
|
899 |
+
"learning_rate": 3.175469655516284e-05,
|
900 |
+
"loss": 0.0007,
|
901 |
+
"step": 1460
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.25,
|
905 |
+
"learning_rate": 3.154027532353052e-05,
|
906 |
+
"loss": 0.0037,
|
907 |
+
"step": 1470
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 1.26,
|
911 |
+
"learning_rate": 3.132533636887753e-05,
|
912 |
+
"loss": 0.0065,
|
913 |
+
"step": 1480
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 1.27,
|
917 |
+
"learning_rate": 3.1109896705601485e-05,
|
918 |
+
"loss": 0.0092,
|
919 |
+
"step": 1490
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.27,
|
923 |
+
"learning_rate": 3.0893973387735687e-05,
|
924 |
+
"loss": 0.0001,
|
925 |
+
"step": 1500
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.27,
|
929 |
+
"eval_loss": 0.010954583063721657,
|
930 |
+
"eval_runtime": 88.0029,
|
931 |
+
"eval_samples_per_second": 22.533,
|
932 |
+
"eval_steps_per_second": 2.818,
|
933 |
+
"step": 1500
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.28,
|
937 |
+
"learning_rate": 3.067758350759917e-05,
|
938 |
+
"loss": 0.0002,
|
939 |
+
"step": 1510
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.29,
|
943 |
+
"learning_rate": 3.046074419444366e-05,
|
944 |
+
"loss": 0.0004,
|
945 |
+
"step": 1520
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.3,
|
949 |
+
"learning_rate": 3.0243472613097656e-05,
|
950 |
+
"loss": 0.001,
|
951 |
+
"step": 1530
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.31,
|
955 |
+
"learning_rate": 3.002578596260765e-05,
|
956 |
+
"loss": 0.0001,
|
957 |
+
"step": 1540
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.32,
|
961 |
+
"learning_rate": 2.980770147487668e-05,
|
962 |
+
"loss": 0.0086,
|
963 |
+
"step": 1550
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 1.33,
|
967 |
+
"learning_rate": 2.958923641330028e-05,
|
968 |
+
"loss": 0.0021,
|
969 |
+
"step": 1560
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 1.33,
|
973 |
+
"learning_rate": 2.9370408071399898e-05,
|
974 |
+
"loss": 0.0001,
|
975 |
+
"step": 1570
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.34,
|
979 |
+
"learning_rate": 2.9151233771453956e-05,
|
980 |
+
"loss": 0.0076,
|
981 |
+
"step": 1580
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.35,
|
985 |
+
"learning_rate": 2.8931730863126666e-05,
|
986 |
+
"loss": 0.0001,
|
987 |
+
"step": 1590
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 1.36,
|
991 |
+
"learning_rate": 2.871191672209459e-05,
|
992 |
+
"loss": 0.0001,
|
993 |
+
"step": 1600
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 1.37,
|
997 |
+
"learning_rate": 2.8491808748671255e-05,
|
998 |
+
"loss": 0.0001,
|
999 |
+
"step": 1610
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.38,
|
1003 |
+
"learning_rate": 2.8271424366429706e-05,
|
1004 |
+
"loss": 0.0115,
|
1005 |
+
"step": 1620
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 1.38,
|
1009 |
+
"learning_rate": 2.8050781020823296e-05,
|
1010 |
+
"loss": 0.0001,
|
1011 |
+
"step": 1630
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.39,
|
1015 |
+
"learning_rate": 2.7829896177804716e-05,
|
1016 |
+
"loss": 0.0003,
|
1017 |
+
"step": 1640
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.4,
|
1021 |
+
"learning_rate": 2.760878732244339e-05,
|
1022 |
+
"loss": 0.0003,
|
1023 |
+
"step": 1650
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.41,
|
1027 |
+
"learning_rate": 2.7387471957541405e-05,
|
1028 |
+
"loss": 0.0024,
|
1029 |
+
"step": 1660
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.42,
|
1033 |
+
"learning_rate": 2.7165967602247964e-05,
|
1034 |
+
"loss": 0.0005,
|
1035 |
+
"step": 1670
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 1.43,
|
1039 |
+
"learning_rate": 2.694429179067261e-05,
|
1040 |
+
"loss": 0.0018,
|
1041 |
+
"step": 1680
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.44,
|
1045 |
+
"learning_rate": 2.6744651468034758e-05,
|
1046 |
+
"loss": 0.002,
|
1047 |
+
"step": 1690
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 1.44,
|
1051 |
+
"learning_rate": 2.6522698243485527e-05,
|
1052 |
+
"loss": 0.0001,
|
1053 |
+
"step": 1700
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.45,
|
1057 |
+
"learning_rate": 2.6300624483347926e-05,
|
1058 |
+
"loss": 0.0058,
|
1059 |
+
"step": 1710
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.46,
|
1063 |
+
"learning_rate": 2.607844776680513e-05,
|
1064 |
+
"loss": 0.0001,
|
1065 |
+
"step": 1720
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.47,
|
1069 |
+
"learning_rate": 2.585618568119027e-05,
|
1070 |
+
"loss": 0.0001,
|
1071 |
+
"step": 1730
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 1.48,
|
1075 |
+
"learning_rate": 2.56338558205942e-05,
|
1076 |
+
"loss": 0.0008,
|
1077 |
+
"step": 1740
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 1.49,
|
1081 |
+
"learning_rate": 2.5411475784472805e-05,
|
1082 |
+
"loss": 0.0002,
|
1083 |
+
"step": 1750
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.5,
|
1087 |
+
"learning_rate": 2.5189063176253825e-05,
|
1088 |
+
"loss": 0.0001,
|
1089 |
+
"step": 1760
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 1.5,
|
1093 |
+
"learning_rate": 2.496663560194338e-05,
|
1094 |
+
"loss": 0.0001,
|
1095 |
+
"step": 1770
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.51,
|
1099 |
+
"learning_rate": 2.4744210668732295e-05,
|
1100 |
+
"loss": 0.0001,
|
1101 |
+
"step": 1780
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.52,
|
1105 |
+
"learning_rate": 2.452180598360232e-05,
|
1106 |
+
"loss": 0.0001,
|
1107 |
+
"step": 1790
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.53,
|
1111 |
+
"learning_rate": 2.429943915193239e-05,
|
1112 |
+
"loss": 0.0,
|
1113 |
+
"step": 1800
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 1.54,
|
1117 |
+
"learning_rate": 2.4077127776104984e-05,
|
1118 |
+
"loss": 0.0146,
|
1119 |
+
"step": 1810
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.55,
|
1123 |
+
"learning_rate": 2.3854889454112748e-05,
|
1124 |
+
"loss": 0.0017,
|
1125 |
+
"step": 1820
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.55,
|
1129 |
+
"learning_rate": 2.3632741778165442e-05,
|
1130 |
+
"loss": 0.0001,
|
1131 |
+
"step": 1830
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.56,
|
1135 |
+
"learning_rate": 2.3410702333297356e-05,
|
1136 |
+
"loss": 0.0001,
|
1137 |
+
"step": 1840
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.57,
|
1141 |
+
"learning_rate": 2.318878869597528e-05,
|
1142 |
+
"loss": 0.0001,
|
1143 |
+
"step": 1850
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.58,
|
1147 |
+
"learning_rate": 2.2967018432707213e-05,
|
1148 |
+
"loss": 0.0073,
|
1149 |
+
"step": 1860
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.59,
|
1153 |
+
"learning_rate": 2.2745409098651744e-05,
|
1154 |
+
"loss": 0.0001,
|
1155 |
+
"step": 1870
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.6,
|
1159 |
+
"learning_rate": 2.2523978236228442e-05,
|
1160 |
+
"loss": 0.0001,
|
1161 |
+
"step": 1880
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.61,
|
1165 |
+
"learning_rate": 2.2302743373729205e-05,
|
1166 |
+
"loss": 0.0,
|
1167 |
+
"step": 1890
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.61,
|
1171 |
+
"learning_rate": 2.2081722023930743e-05,
|
1172 |
+
"loss": 0.0136,
|
1173 |
+
"step": 1900
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.62,
|
1177 |
+
"learning_rate": 2.1860931682708248e-05,
|
1178 |
+
"loss": 0.0051,
|
1179 |
+
"step": 1910
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.63,
|
1183 |
+
"learning_rate": 2.164038982765047e-05,
|
1184 |
+
"loss": 0.0004,
|
1185 |
+
"step": 1920
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.64,
|
1189 |
+
"learning_rate": 2.1420113916676183e-05,
|
1190 |
+
"loss": 0.0002,
|
1191 |
+
"step": 1930
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.65,
|
1195 |
+
"learning_rate": 2.1200121386652246e-05,
|
1196 |
+
"loss": 0.0001,
|
1197 |
+
"step": 1940
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.66,
|
1201 |
+
"learning_rate": 2.0980429652013297e-05,
|
1202 |
+
"loss": 0.0001,
|
1203 |
+
"step": 1950
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.67,
|
1207 |
+
"learning_rate": 2.0761056103383258e-05,
|
1208 |
+
"loss": 0.0001,
|
1209 |
+
"step": 1960
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.67,
|
1213 |
+
"learning_rate": 2.0542018106198697e-05,
|
1214 |
+
"loss": 0.0,
|
1215 |
+
"step": 1970
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.68,
|
1219 |
+
"learning_rate": 2.0323332999334198e-05,
|
1220 |
+
"loss": 0.005,
|
1221 |
+
"step": 1980
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.69,
|
1225 |
+
"learning_rate": 2.010501809372981e-05,
|
1226 |
+
"loss": 0.0149,
|
1227 |
+
"step": 1990
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.7,
|
1231 |
+
"learning_rate": 1.988709067102076e-05,
|
1232 |
+
"loss": 0.0143,
|
1233 |
+
"step": 2000
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.7,
|
1237 |
+
"eval_loss": 0.013543435372412205,
|
1238 |
+
"eval_runtime": 87.9904,
|
1239 |
+
"eval_samples_per_second": 22.537,
|
1240 |
+
"eval_steps_per_second": 2.818,
|
1241 |
+
"step": 2000
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.71,
|
1245 |
+
"learning_rate": 1.966956798216943e-05,
|
1246 |
+
"loss": 0.0017,
|
1247 |
+
"step": 2010
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 1.72,
|
1251 |
+
"learning_rate": 1.945246724609978e-05,
|
1252 |
+
"loss": 0.0038,
|
1253 |
+
"step": 2020
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 1.72,
|
1257 |
+
"learning_rate": 1.9235805648334342e-05,
|
1258 |
+
"loss": 0.0003,
|
1259 |
+
"step": 2030
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 1.73,
|
1263 |
+
"learning_rate": 1.9019600339633798e-05,
|
1264 |
+
"loss": 0.0005,
|
1265 |
+
"step": 2040
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 1.74,
|
1269 |
+
"learning_rate": 1.8803868434639345e-05,
|
1270 |
+
"loss": 0.0005,
|
1271 |
+
"step": 2050
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 1.75,
|
1275 |
+
"learning_rate": 1.858862701051791e-05,
|
1276 |
+
"loss": 0.0009,
|
1277 |
+
"step": 2060
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.76,
|
1281 |
+
"learning_rate": 1.8373893105610356e-05,
|
1282 |
+
"loss": 0.0002,
|
1283 |
+
"step": 2070
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.77,
|
1287 |
+
"learning_rate": 1.815968371808273e-05,
|
1288 |
+
"loss": 0.0036,
|
1289 |
+
"step": 2080
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 1.78,
|
1293 |
+
"learning_rate": 1.7946015804580688e-05,
|
1294 |
+
"loss": 0.0138,
|
1295 |
+
"step": 2090
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.78,
|
1299 |
+
"learning_rate": 1.7732906278887225e-05,
|
1300 |
+
"loss": 0.0005,
|
1301 |
+
"step": 2100
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 1.79,
|
1305 |
+
"learning_rate": 1.7520372010583815e-05,
|
1306 |
+
"loss": 0.0001,
|
1307 |
+
"step": 2110
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 1.8,
|
1311 |
+
"learning_rate": 1.7308429823714995e-05,
|
1312 |
+
"loss": 0.0001,
|
1313 |
+
"step": 2120
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 1.81,
|
1317 |
+
"learning_rate": 1.709709649545662e-05,
|
1318 |
+
"loss": 0.0001,
|
1319 |
+
"step": 2130
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.82,
|
1323 |
+
"learning_rate": 1.688638875478777e-05,
|
1324 |
+
"loss": 0.0001,
|
1325 |
+
"step": 2140
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.83,
|
1329 |
+
"learning_rate": 1.66763232811665e-05,
|
1330 |
+
"loss": 0.0,
|
1331 |
+
"step": 2150
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 1.84,
|
1335 |
+
"learning_rate": 1.6466916703209535e-05,
|
1336 |
+
"loss": 0.012,
|
1337 |
+
"step": 2160
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.84,
|
1341 |
+
"learning_rate": 1.625818559737592e-05,
|
1342 |
+
"loss": 0.0,
|
1343 |
+
"step": 2170
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 1.85,
|
1347 |
+
"learning_rate": 1.605014648665486e-05,
|
1348 |
+
"loss": 0.0005,
|
1349 |
+
"step": 2180
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.86,
|
1353 |
+
"learning_rate": 1.584281583925779e-05,
|
1354 |
+
"loss": 0.0047,
|
1355 |
+
"step": 2190
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 1.87,
|
1359 |
+
"learning_rate": 1.5636210067314744e-05,
|
1360 |
+
"loss": 0.0126,
|
1361 |
+
"step": 2200
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.88,
|
1365 |
+
"learning_rate": 1.5430345525575186e-05,
|
1366 |
+
"loss": 0.0015,
|
1367 |
+
"step": 2210
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.89,
|
1371 |
+
"learning_rate": 1.5225238510113377e-05,
|
1372 |
+
"loss": 0.0018,
|
1373 |
+
"step": 2220
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 1.89,
|
1377 |
+
"learning_rate": 1.5020905257038403e-05,
|
1378 |
+
"loss": 0.0057,
|
1379 |
+
"step": 2230
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.9,
|
1383 |
+
"learning_rate": 1.481736194120894e-05,
|
1384 |
+
"loss": 0.0036,
|
1385 |
+
"step": 2240
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.91,
|
1389 |
+
"learning_rate": 1.4614624674952842e-05,
|
1390 |
+
"loss": 0.0006,
|
1391 |
+
"step": 2250
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.92,
|
1395 |
+
"learning_rate": 1.4412709506791725e-05,
|
1396 |
+
"loss": 0.0054,
|
1397 |
+
"step": 2260
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 1.93,
|
1401 |
+
"learning_rate": 1.4211632420170558e-05,
|
1402 |
+
"loss": 0.0039,
|
1403 |
+
"step": 2270
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.94,
|
1407 |
+
"learning_rate": 1.4011409332192472e-05,
|
1408 |
+
"loss": 0.0017,
|
1409 |
+
"step": 2280
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.95,
|
1413 |
+
"learning_rate": 1.3812056092358686e-05,
|
1414 |
+
"loss": 0.0181,
|
1415 |
+
"step": 2290
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 1.95,
|
1419 |
+
"learning_rate": 1.3613588481313977e-05,
|
1420 |
+
"loss": 0.0035,
|
1421 |
+
"step": 2300
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.96,
|
1425 |
+
"learning_rate": 1.3416022209597429e-05,
|
1426 |
+
"loss": 0.0001,
|
1427 |
+
"step": 2310
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 1.97,
|
1431 |
+
"learning_rate": 1.3219372916398826e-05,
|
1432 |
+
"loss": 0.0005,
|
1433 |
+
"step": 2320
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.98,
|
1437 |
+
"learning_rate": 1.302365616832063e-05,
|
1438 |
+
"loss": 0.0012,
|
1439 |
+
"step": 2330
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 1.99,
|
1443 |
+
"learning_rate": 1.2828887458145806e-05,
|
1444 |
+
"loss": 0.0052,
|
1445 |
+
"step": 2340
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 2.0,
|
1449 |
+
"learning_rate": 1.2635082203611375e-05,
|
1450 |
+
"loss": 0.0008,
|
1451 |
+
"step": 2350
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.01,
|
1455 |
+
"learning_rate": 1.2442255746187954e-05,
|
1456 |
+
"loss": 0.0002,
|
1457 |
+
"step": 2360
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 2.01,
|
1461 |
+
"learning_rate": 1.2250423349865387e-05,
|
1462 |
+
"loss": 0.0009,
|
1463 |
+
"step": 2370
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 2.02,
|
1467 |
+
"learning_rate": 1.2059600199944388e-05,
|
1468 |
+
"loss": 0.0002,
|
1469 |
+
"step": 2380
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 2.03,
|
1473 |
+
"learning_rate": 1.1869801401834564e-05,
|
1474 |
+
"loss": 0.0001,
|
1475 |
+
"step": 2390
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 2.04,
|
1479 |
+
"learning_rate": 1.1681041979858626e-05,
|
1480 |
+
"loss": 0.0001,
|
1481 |
+
"step": 2400
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 2.05,
|
1485 |
+
"learning_rate": 1.1493336876063071e-05,
|
1486 |
+
"loss": 0.0001,
|
1487 |
+
"step": 2410
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 2.06,
|
1491 |
+
"learning_rate": 1.1306700949035462e-05,
|
1492 |
+
"loss": 0.0,
|
1493 |
+
"step": 2420
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.06,
|
1497 |
+
"learning_rate": 1.1121148972728104e-05,
|
1498 |
+
"loss": 0.0001,
|
1499 |
+
"step": 2430
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 2.07,
|
1503 |
+
"learning_rate": 1.0936695635288674e-05,
|
1504 |
+
"loss": 0.0001,
|
1505 |
+
"step": 2440
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 2.08,
|
1509 |
+
"learning_rate": 1.0753355537897427e-05,
|
1510 |
+
"loss": 0.0001,
|
1511 |
+
"step": 2450
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 2.09,
|
1515 |
+
"learning_rate": 1.0571143193611444e-05,
|
1516 |
+
"loss": 0.0,
|
1517 |
+
"step": 2460
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 2.1,
|
1521 |
+
"learning_rate": 1.039007302621576e-05,
|
1522 |
+
"loss": 0.0001,
|
1523 |
+
"step": 2470
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 2.11,
|
1527 |
+
"learning_rate": 1.0210159369081568e-05,
|
1528 |
+
"loss": 0.0003,
|
1529 |
+
"step": 2480
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 2.12,
|
1533 |
+
"learning_rate": 1.0031416464031654e-05,
|
1534 |
+
"loss": 0.0,
|
1535 |
+
"step": 2490
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.12,
|
1539 |
+
"learning_rate": 9.853858460212962e-06,
|
1540 |
+
"loss": 0.0001,
|
1541 |
+
"step": 2500
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 2.12,
|
1545 |
+
"eval_loss": 0.012909023091197014,
|
1546 |
+
"eval_runtime": 87.9835,
|
1547 |
+
"eval_samples_per_second": 22.538,
|
1548 |
+
"eval_steps_per_second": 2.819,
|
1549 |
+
"step": 2500
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.13,
|
1553 |
+
"learning_rate": 9.677499412976632e-06,
|
1554 |
+
"loss": 0.0,
|
1555 |
+
"step": 2510
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 2.14,
|
1559 |
+
"learning_rate": 9.502353282765306e-06,
|
1560 |
+
"loss": 0.0001,
|
1561 |
+
"step": 2520
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 2.15,
|
1565 |
+
"learning_rate": 9.328433934008107e-06,
|
1566 |
+
"loss": 0.0002,
|
1567 |
+
"step": 2530
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 2.16,
|
1571 |
+
"learning_rate": 9.155755134023097e-06,
|
1572 |
+
"loss": 0.0,
|
1573 |
+
"step": 2540
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 2.17,
|
1577 |
+
"learning_rate": 8.984330551927475e-06,
|
1578 |
+
"loss": 0.0,
|
1579 |
+
"step": 2550
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 2.18,
|
1583 |
+
"learning_rate": 8.81417375755556e-06,
|
1584 |
+
"loss": 0.0002,
|
1585 |
+
"step": 2560
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 2.18,
|
1589 |
+
"learning_rate": 8.645298220384567e-06,
|
1590 |
+
"loss": 0.0001,
|
1591 |
+
"step": 2570
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.19,
|
1595 |
+
"learning_rate": 8.477717308468442e-06,
|
1596 |
+
"loss": 0.0008,
|
1597 |
+
"step": 2580
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 2.2,
|
1601 |
+
"learning_rate": 8.31144428737958e-06,
|
1602 |
+
"loss": 0.0,
|
1603 |
+
"step": 2590
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 2.21,
|
1607 |
+
"learning_rate": 8.146492319158805e-06,
|
1608 |
+
"loss": 0.0,
|
1609 |
+
"step": 2600
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 2.22,
|
1613 |
+
"learning_rate": 7.982874461273438e-06,
|
1614 |
+
"loss": 0.0001,
|
1615 |
+
"step": 2610
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 2.23,
|
1619 |
+
"learning_rate": 7.820603665583654e-06,
|
1620 |
+
"loss": 0.0002,
|
1621 |
+
"step": 2620
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 2.23,
|
1625 |
+
"learning_rate": 7.659692777317288e-06,
|
1626 |
+
"loss": 0.0001,
|
1627 |
+
"step": 2630
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 2.24,
|
1631 |
+
"learning_rate": 7.500154534052933e-06,
|
1632 |
+
"loss": 0.0001,
|
1633 |
+
"step": 2640
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.25,
|
1637 |
+
"learning_rate": 7.342001564711756e-06,
|
1638 |
+
"loss": 0.0001,
|
1639 |
+
"step": 2650
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 2.26,
|
1643 |
+
"learning_rate": 7.185246388557665e-06,
|
1644 |
+
"loss": 0.0,
|
1645 |
+
"step": 2660
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 2.27,
|
1649 |
+
"learning_rate": 7.0299014142064106e-06,
|
1650 |
+
"loss": 0.0,
|
1651 |
+
"step": 2670
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 2.28,
|
1655 |
+
"learning_rate": 6.875978938643277e-06,
|
1656 |
+
"loss": 0.0001,
|
1657 |
+
"step": 2680
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 2.29,
|
1661 |
+
"learning_rate": 6.723491146249647e-06,
|
1662 |
+
"loss": 0.0,
|
1663 |
+
"step": 2690
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 2.29,
|
1667 |
+
"learning_rate": 6.572450107838551e-06,
|
1668 |
+
"loss": 0.0001,
|
1669 |
+
"step": 2700
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 2.3,
|
1673 |
+
"learning_rate": 6.422867779699088e-06,
|
1674 |
+
"loss": 0.0002,
|
1675 |
+
"step": 2710
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.31,
|
1679 |
+
"learning_rate": 6.274756002650034e-06,
|
1680 |
+
"loss": 0.0001,
|
1681 |
+
"step": 2720
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 2.32,
|
1685 |
+
"learning_rate": 6.128126501102479e-06,
|
1686 |
+
"loss": 0.0001,
|
1687 |
+
"step": 2730
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 2.33,
|
1691 |
+
"learning_rate": 5.982990882131775e-06,
|
1692 |
+
"loss": 0.0001,
|
1693 |
+
"step": 2740
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 2.34,
|
1697 |
+
"learning_rate": 5.83936063455871e-06,
|
1698 |
+
"loss": 0.0001,
|
1699 |
+
"step": 2750
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 2.34,
|
1703 |
+
"learning_rate": 5.697247128040037e-06,
|
1704 |
+
"loss": 0.0,
|
1705 |
+
"step": 2760
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 2.35,
|
1709 |
+
"learning_rate": 5.556661612168537e-06,
|
1710 |
+
"loss": 0.0003,
|
1711 |
+
"step": 2770
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 2.36,
|
1715 |
+
"learning_rate": 5.417615215582408e-06,
|
1716 |
+
"loss": 0.0001,
|
1717 |
+
"step": 2780
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.37,
|
1721 |
+
"learning_rate": 5.280118945084422e-06,
|
1722 |
+
"loss": 0.0001,
|
1723 |
+
"step": 2790
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 2.38,
|
1727 |
+
"learning_rate": 5.144183684770565e-06,
|
1728 |
+
"loss": 0.0,
|
1729 |
+
"step": 2800
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 2.39,
|
1733 |
+
"learning_rate": 5.00982019516851e-06,
|
1734 |
+
"loss": 0.0,
|
1735 |
+
"step": 2810
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 2.4,
|
1739 |
+
"learning_rate": 4.877039112385815e-06,
|
1740 |
+
"loss": 0.0001,
|
1741 |
+
"step": 2820
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 2.4,
|
1745 |
+
"learning_rate": 4.74585094726793e-06,
|
1746 |
+
"loss": 0.0003,
|
1747 |
+
"step": 2830
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 2.41,
|
1751 |
+
"learning_rate": 4.616266084566243e-06,
|
1752 |
+
"loss": 0.0,
|
1753 |
+
"step": 2840
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 2.42,
|
1757 |
+
"learning_rate": 4.488294782115957e-06,
|
1758 |
+
"loss": 0.0001,
|
1759 |
+
"step": 2850
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.43,
|
1763 |
+
"learning_rate": 4.361947170024144e-06,
|
1764 |
+
"loss": 0.0001,
|
1765 |
+
"step": 2860
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 2.44,
|
1769 |
+
"learning_rate": 4.2372332498678256e-06,
|
1770 |
+
"loss": 0.0007,
|
1771 |
+
"step": 2870
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 2.45,
|
1775 |
+
"learning_rate": 4.11416289390226e-06,
|
1776 |
+
"loss": 0.0061,
|
1777 |
+
"step": 2880
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 2.46,
|
1781 |
+
"learning_rate": 3.992745844279475e-06,
|
1782 |
+
"loss": 0.0,
|
1783 |
+
"step": 2890
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 2.46,
|
1787 |
+
"learning_rate": 3.872991712277052e-06,
|
1788 |
+
"loss": 0.0001,
|
1789 |
+
"step": 2900
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 2.47,
|
1793 |
+
"learning_rate": 3.7549099775373576e-06,
|
1794 |
+
"loss": 0.0002,
|
1795 |
+
"step": 2910
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 2.48,
|
1799 |
+
"learning_rate": 3.6385099873170875e-06,
|
1800 |
+
"loss": 0.0,
|
1801 |
+
"step": 2920
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.49,
|
1805 |
+
"learning_rate": 3.5238009557473946e-06,
|
1806 |
+
"loss": 0.0,
|
1807 |
+
"step": 2930
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 2.5,
|
1811 |
+
"learning_rate": 3.4107919631044732e-06,
|
1812 |
+
"loss": 0.0028,
|
1813 |
+
"step": 2940
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 2.51,
|
1817 |
+
"learning_rate": 3.299491955090775e-06,
|
1818 |
+
"loss": 0.0003,
|
1819 |
+
"step": 2950
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 2.51,
|
1823 |
+
"learning_rate": 3.1899097421268924e-06,
|
1824 |
+
"loss": 0.0001,
|
1825 |
+
"step": 2960
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 2.52,
|
1829 |
+
"learning_rate": 3.0820539986541054e-06,
|
1830 |
+
"loss": 0.0,
|
1831 |
+
"step": 2970
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 2.53,
|
1835 |
+
"learning_rate": 2.97593326244775e-06,
|
1836 |
+
"loss": 0.0013,
|
1837 |
+
"step": 2980
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 2.54,
|
1841 |
+
"learning_rate": 2.871555933941353e-06,
|
1842 |
+
"loss": 0.0001,
|
1843 |
+
"step": 2990
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.55,
|
1847 |
+
"learning_rate": 2.7689302755616736e-06,
|
1848 |
+
"loss": 0.0001,
|
1849 |
+
"step": 3000
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.55,
|
1853 |
+
"eval_loss": 0.014460938051342964,
|
1854 |
+
"eval_runtime": 87.9924,
|
1855 |
+
"eval_samples_per_second": 22.536,
|
1856 |
+
"eval_steps_per_second": 2.818,
|
1857 |
+
"step": 3000
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.56,
|
1861 |
+
"learning_rate": 2.6680644110746305e-06,
|
1862 |
+
"loss": 0.0,
|
1863 |
+
"step": 3010
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 2.57,
|
1867 |
+
"learning_rate": 2.568966324942268e-06,
|
1868 |
+
"loss": 0.0001,
|
1869 |
+
"step": 3020
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 2.57,
|
1873 |
+
"learning_rate": 2.4716438616906977e-06,
|
1874 |
+
"loss": 0.0,
|
1875 |
+
"step": 3030
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 2.58,
|
1879 |
+
"learning_rate": 2.376104725289105e-06,
|
1880 |
+
"loss": 0.0002,
|
1881 |
+
"step": 3040
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 2.59,
|
1885 |
+
"learning_rate": 2.2823564785399596e-06,
|
1886 |
+
"loss": 0.0,
|
1887 |
+
"step": 3050
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 2.6,
|
1891 |
+
"learning_rate": 2.1904065424803e-06,
|
1892 |
+
"loss": 0.0,
|
1893 |
+
"step": 3060
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 2.61,
|
1897 |
+
"learning_rate": 2.1002621957943308e-06,
|
1898 |
+
"loss": 0.0001,
|
1899 |
+
"step": 3070
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.62,
|
1903 |
+
"learning_rate": 2.011930574237228e-06,
|
1904 |
+
"loss": 0.0,
|
1905 |
+
"step": 3080
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 2.63,
|
1909 |
+
"learning_rate": 1.925418670070267e-06,
|
1910 |
+
"loss": 0.0,
|
1911 |
+
"step": 3090
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 2.63,
|
1915 |
+
"learning_rate": 1.8407333315073466e-06,
|
1916 |
+
"loss": 0.0,
|
1917 |
+
"step": 3100
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 2.64,
|
1921 |
+
"learning_rate": 1.7578812621728751e-06,
|
1922 |
+
"loss": 0.0001,
|
1923 |
+
"step": 3110
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 2.65,
|
1927 |
+
"learning_rate": 1.6768690205711173e-06,
|
1928 |
+
"loss": 0.0002,
|
1929 |
+
"step": 3120
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 2.66,
|
1933 |
+
"learning_rate": 1.5977030195670289e-06,
|
1934 |
+
"loss": 0.0,
|
1935 |
+
"step": 3130
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 2.67,
|
1939 |
+
"learning_rate": 1.5203895258786238e-06,
|
1940 |
+
"loss": 0.0001,
|
1941 |
+
"step": 3140
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.68,
|
1945 |
+
"learning_rate": 1.4449346595809015e-06,
|
1946 |
+
"loss": 0.0001,
|
1947 |
+
"step": 3150
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 2.68,
|
1951 |
+
"learning_rate": 1.3713443936213822e-06,
|
1952 |
+
"loss": 0.0,
|
1953 |
+
"step": 3160
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 2.69,
|
1957 |
+
"learning_rate": 1.299624553347309e-06,
|
1958 |
+
"loss": 0.0,
|
1959 |
+
"step": 3170
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 2.7,
|
1963 |
+
"learning_rate": 1.2297808160444929e-06,
|
1964 |
+
"loss": 0.0,
|
1965 |
+
"step": 3180
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 2.71,
|
1969 |
+
"learning_rate": 1.161818710487933e-06,
|
1970 |
+
"loss": 0.0,
|
1971 |
+
"step": 3190
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 2.72,
|
1975 |
+
"learning_rate": 1.095743616504144e-06,
|
1976 |
+
"loss": 0.0001,
|
1977 |
+
"step": 3200
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 2.73,
|
1981 |
+
"learning_rate": 1.0315607645452836e-06,
|
1982 |
+
"loss": 0.0006,
|
1983 |
+
"step": 3210
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 2.74,
|
1987 |
+
"learning_rate": 9.692752352751466e-07,
|
1988 |
+
"loss": 0.0001,
|
1989 |
+
"step": 3220
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 2.74,
|
1993 |
+
"learning_rate": 9.088919591669548e-07,
|
1994 |
+
"loss": 0.0001,
|
1995 |
+
"step": 3230
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 2.75,
|
1999 |
+
"learning_rate": 8.504157161130788e-07,
|
2000 |
+
"loss": 0.0,
|
2001 |
+
"step": 3240
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 2.76,
|
2005 |
+
"learning_rate": 7.938511350466527e-07,
|
2006 |
+
"loss": 0.0001,
|
2007 |
+
"step": 3250
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 2.77,
|
2011 |
+
"learning_rate": 7.39202693575175e-07,
|
2012 |
+
"loss": 0.0001,
|
2013 |
+
"step": 3260
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 2.78,
|
2017 |
+
"learning_rate": 6.864747176260289e-07,
|
2018 |
+
"loss": 0.0001,
|
2019 |
+
"step": 3270
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 2.79,
|
2023 |
+
"learning_rate": 6.356713811040888e-07,
|
2024 |
+
"loss": 0.0002,
|
2025 |
+
"step": 3280
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.8,
|
2029 |
+
"learning_rate": 5.867967055612794e-07,
|
2030 |
+
"loss": 0.0,
|
2031 |
+
"step": 3290
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 2.8,
|
2035 |
+
"learning_rate": 5.398545598782528e-07,
|
2036 |
+
"loss": 0.0002,
|
2037 |
+
"step": 3300
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 2.81,
|
2041 |
+
"learning_rate": 4.948486599581276e-07,
|
2042 |
+
"loss": 0.0,
|
2043 |
+
"step": 3310
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 2.82,
|
2047 |
+
"learning_rate": 4.517825684323324e-07,
|
2048 |
+
"loss": 0.0,
|
2049 |
+
"step": 3320
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 2.83,
|
2053 |
+
"learning_rate": 4.1065969437860954e-07,
|
2054 |
+
"loss": 0.0001,
|
2055 |
+
"step": 3330
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 2.84,
|
2059 |
+
"learning_rate": 3.714832930511336e-07,
|
2060 |
+
"loss": 0.0,
|
2061 |
+
"step": 3340
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 2.85,
|
2065 |
+
"learning_rate": 3.342564656228453e-07,
|
2066 |
+
"loss": 0.0,
|
2067 |
+
"step": 3350
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.85,
|
2071 |
+
"learning_rate": 2.9898215893995054e-07,
|
2072 |
+
"loss": 0.0,
|
2073 |
+
"step": 3360
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 2.86,
|
2077 |
+
"learning_rate": 2.6566316528866264e-07,
|
2078 |
+
"loss": 0.0052,
|
2079 |
+
"step": 3370
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 2.87,
|
2083 |
+
"learning_rate": 2.3430212217415982e-07,
|
2084 |
+
"loss": 0.0,
|
2085 |
+
"step": 3380
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 2.88,
|
2089 |
+
"learning_rate": 2.0490151211180752e-07,
|
2090 |
+
"loss": 0.0,
|
2091 |
+
"step": 3390
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 2.89,
|
2095 |
+
"learning_rate": 1.7746366243063806e-07,
|
2096 |
+
"loss": 0.0,
|
2097 |
+
"step": 3400
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 2.9,
|
2101 |
+
"learning_rate": 1.5199074508912836e-07,
|
2102 |
+
"loss": 0.0001,
|
2103 |
+
"step": 3410
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 2.91,
|
2107 |
+
"learning_rate": 1.2848477650325984e-07,
|
2108 |
+
"loss": 0.0001,
|
2109 |
+
"step": 3420
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 2.91,
|
2113 |
+
"learning_rate": 1.069476173869155e-07,
|
2114 |
+
"loss": 0.0,
|
2115 |
+
"step": 3430
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 2.92,
|
2119 |
+
"learning_rate": 8.738097260456713e-08,
|
2120 |
+
"loss": 0.0,
|
2121 |
+
"step": 3440
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 2.93,
|
2125 |
+
"learning_rate": 6.978639103634444e-08,
|
2126 |
+
"loss": 0.0042,
|
2127 |
+
"step": 3450
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 2.94,
|
2131 |
+
"learning_rate": 5.41652654553998e-08,
|
2132 |
+
"loss": 0.0004,
|
2133 |
+
"step": 3460
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 2.95,
|
2137 |
+
"learning_rate": 4.051883241767973e-08,
|
2138 |
+
"loss": 0.0042,
|
2139 |
+
"step": 3470
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 2.96,
|
2143 |
+
"learning_rate": 2.8848172164025465e-08,
|
2144 |
+
"loss": 0.0001,
|
2145 |
+
"step": 3480
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 2.97,
|
2149 |
+
"learning_rate": 1.915420853467187e-08,
|
2150 |
+
"loss": 0.0,
|
2151 |
+
"step": 3490
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 2.97,
|
2155 |
+
"learning_rate": 1.1437708896108733e-08,
|
2156 |
+
"loss": 0.002,
|
2157 |
+
"step": 3500
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 2.97,
|
2161 |
+
"eval_loss": 0.014973307959735394,
|
2162 |
+
"eval_runtime": 87.9852,
|
2163 |
+
"eval_samples_per_second": 22.538,
|
2164 |
+
"eval_steps_per_second": 2.819,
|
2165 |
+
"step": 3500
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 2.98,
|
2169 |
+
"learning_rate": 6.1840990213946074e-09,
|
2170 |
+
"loss": 0.0064,
|
2171 |
+
"step": 3510
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 2.99,
|
2175 |
+
"learning_rate": 2.2263343925993386e-09,
|
2176 |
+
"loss": 0.0,
|
2177 |
+
"step": 3520
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 3.0,
|
2181 |
+
"learning_rate": 2.4737375172445563e-10,
|
2182 |
+
"loss": 0.0,
|
2183 |
+
"step": 3530
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 3.0,
|
2187 |
+
"step": 3531,
|
2188 |
+
"total_flos": 5.305750058460119e+17,
|
2189 |
+
"train_loss": 0.06714861565509712,
|
2190 |
+
"train_runtime": 17560.0547,
|
2191 |
+
"train_samples_per_second": 6.434,
|
2192 |
+
"train_steps_per_second": 0.201
|
2193 |
+
}
|
2194 |
+
],
|
2195 |
+
"logging_steps": 10,
|
2196 |
+
"max_steps": 3531,
|
2197 |
+
"num_train_epochs": 3,
|
2198 |
+
"save_steps": 1000,
|
2199 |
+
"total_flos": 5.305750058460119e+17,
|
2200 |
+
"trial_name": null,
|
2201 |
+
"trial_params": null
|
2202 |
+
}
|
LLM-Detector-V1-4w/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
|
3 |
+
size 4664
|
LLM-Detector-V1-4w/training_eval_loss.png
ADDED