wangrongsheng commited on
Commit
43646eb
·
1 Parent(s): 53a86c0

Baichuan2-7b-Chat version:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/tree/84603cde5ebffb6084e476cfaeceaf0b8b91fe54

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LLM-Detector-V1-4w/README.md +66 -0
  2. LLM-Detector-V1-4w/adapter_config.json +22 -0
  3. LLM-Detector-V1-4w/adapter_model.bin +3 -0
  4. LLM-Detector-V1-4w/all_results.json +11 -0
  5. LLM-Detector-V1-4w/checkpoint-1000/README.md +219 -0
  6. LLM-Detector-V1-4w/checkpoint-1000/adapter_config.json +22 -0
  7. LLM-Detector-V1-4w/checkpoint-1000/adapter_model.bin +3 -0
  8. LLM-Detector-V1-4w/checkpoint-1000/optimizer.pt +3 -0
  9. LLM-Detector-V1-4w/checkpoint-1000/rng_state.pth +3 -0
  10. LLM-Detector-V1-4w/checkpoint-1000/scheduler.pt +3 -0
  11. LLM-Detector-V1-4w/checkpoint-1000/special_tokens_map.json +30 -0
  12. LLM-Detector-V1-4w/checkpoint-1000/tokenization_baichuan.py +251 -0
  13. LLM-Detector-V1-4w/checkpoint-1000/tokenizer.model +3 -0
  14. LLM-Detector-V1-4w/checkpoint-1000/tokenizer_config.json +49 -0
  15. LLM-Detector-V1-4w/checkpoint-1000/trainer_state.json +635 -0
  16. LLM-Detector-V1-4w/checkpoint-1000/training_args.bin +3 -0
  17. LLM-Detector-V1-4w/checkpoint-2000/README.md +219 -0
  18. LLM-Detector-V1-4w/checkpoint-2000/adapter_config.json +22 -0
  19. LLM-Detector-V1-4w/checkpoint-2000/adapter_model.bin +3 -0
  20. LLM-Detector-V1-4w/checkpoint-2000/optimizer.pt +3 -0
  21. LLM-Detector-V1-4w/checkpoint-2000/rng_state.pth +3 -0
  22. LLM-Detector-V1-4w/checkpoint-2000/scheduler.pt +3 -0
  23. LLM-Detector-V1-4w/checkpoint-2000/special_tokens_map.json +30 -0
  24. LLM-Detector-V1-4w/checkpoint-2000/tokenization_baichuan.py +251 -0
  25. LLM-Detector-V1-4w/checkpoint-2000/tokenizer.model +3 -0
  26. LLM-Detector-V1-4w/checkpoint-2000/tokenizer_config.json +49 -0
  27. LLM-Detector-V1-4w/checkpoint-2000/trainer_state.json +1251 -0
  28. LLM-Detector-V1-4w/checkpoint-2000/training_args.bin +3 -0
  29. LLM-Detector-V1-4w/checkpoint-3000/README.md +219 -0
  30. LLM-Detector-V1-4w/checkpoint-3000/adapter_config.json +22 -0
  31. LLM-Detector-V1-4w/checkpoint-3000/adapter_model.bin +3 -0
  32. LLM-Detector-V1-4w/checkpoint-3000/optimizer.pt +3 -0
  33. LLM-Detector-V1-4w/checkpoint-3000/rng_state.pth +3 -0
  34. LLM-Detector-V1-4w/checkpoint-3000/scheduler.pt +3 -0
  35. LLM-Detector-V1-4w/checkpoint-3000/special_tokens_map.json +30 -0
  36. LLM-Detector-V1-4w/checkpoint-3000/tokenization_baichuan.py +251 -0
  37. LLM-Detector-V1-4w/checkpoint-3000/tokenizer.model +3 -0
  38. LLM-Detector-V1-4w/checkpoint-3000/tokenizer_config.json +49 -0
  39. LLM-Detector-V1-4w/checkpoint-3000/trainer_state.json +1867 -0
  40. LLM-Detector-V1-4w/checkpoint-3000/training_args.bin +3 -0
  41. LLM-Detector-V1-4w/eval_results.json +7 -0
  42. LLM-Detector-V1-4w/special_tokens_map.json +30 -0
  43. LLM-Detector-V1-4w/tokenization_baichuan.py +251 -0
  44. LLM-Detector-V1-4w/tokenizer.model +3 -0
  45. LLM-Detector-V1-4w/tokenizer_config.json +49 -0
  46. LLM-Detector-V1-4w/train_results.json +7 -0
  47. LLM-Detector-V1-4w/trainer_log.jsonl +362 -0
  48. LLM-Detector-V1-4w/trainer_state.json +2202 -0
  49. LLM-Detector-V1-4w/training_args.bin +3 -0
  50. LLM-Detector-V1-4w/training_eval_loss.png +0 -0
LLM-Detector-V1-4w/README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ../Baichuan2-7B-Chat
3
+ tags:
4
+ - llama-factory
5
+ - lora
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: hc3zh
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # hc3zh
16
+
17
+ This model is a fine-tuned version of [../Baichuan2-7B-Chat](https://huggingface.co/../Baichuan2-7B-Chat) on the hc3zh dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0150
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - num_epochs: 3.0
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 0.0199 | 0.42 | 500 | 0.0105 |
53
+ | 0.0011 | 0.85 | 1000 | 0.0118 |
54
+ | 0.0001 | 1.27 | 1500 | 0.0110 |
55
+ | 0.0143 | 1.7 | 2000 | 0.0135 |
56
+ | 0.0001 | 2.12 | 2500 | 0.0129 |
57
+ | 0.0001 | 2.55 | 3000 | 0.0145 |
58
+ | 0.002 | 2.97 | 3500 | 0.0150 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.32.1
64
+ - Pytorch 2.1.0+cu121
65
+ - Datasets 2.14.6
66
+ - Tokenizers 0.13.2
LLM-Detector-V1-4w/adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32.0,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "W_pack"
20
+ ],
21
+ "task_type": "CAUSAL_LM"
22
+ }
LLM-Detector-V1-4w/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43824a5d6a7ba3851d5cdec7eaebba477ebc4dc160eeeb85afd21cc987ec7440
3
+ size 16800430
LLM-Detector-V1-4w/all_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.014986271038651466,
4
+ "eval_runtime": 87.9616,
5
+ "eval_samples_per_second": 22.544,
6
+ "eval_steps_per_second": 2.819,
7
+ "train_loss": 0.06714861565509712,
8
+ "train_runtime": 17560.0547,
9
+ "train_samples_per_second": 6.434,
10
+ "train_steps_per_second": 0.201
11
+ }
LLM-Detector-V1-4w/checkpoint-1000/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../Baichuan2-7B-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: float16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
LLM-Detector-V1-4w/checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32.0,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "W_pack"
20
+ ],
21
+ "task_type": "CAUSAL_LM"
22
+ }
LLM-Detector-V1-4w/checkpoint-1000/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe40450b2fbd3f10782fef8e66d9acb4e5cac016892e806376a3af80925fad96
3
+ size 16800430
LLM-Detector-V1-4w/checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18bddeeaa98c46d5d2497ed51b747e5fe4c7ee27d855dfe46460ce899dc2bf53
3
+ size 33608634
LLM-Detector-V1-4w/checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83da651fcd152de69564c4b12041693577b33619275f061f47eaa1672c885e33
3
+ size 14244
LLM-Detector-V1-4w/checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bd3b1194329dcc74504173cf2ff77c083a42ad7882c159146ad4a1df92ffee3
3
+ size 1064
LLM-Detector-V1-4w/checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
LLM-Detector-V1-4w/checkpoint-1000/tokenization_baichuan.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ add_bos_token=add_bos_token,
81
+ add_eos_token=add_eos_token,
82
+ sp_model_kwargs=self.sp_model_kwargs,
83
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
+ **kwargs,
85
+ )
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.Load(vocab_file)
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ self.sp_model.Load(self.vocab_file)
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ def get_vocab(self):
108
+ """Returns vocab as a dict"""
109
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
110
+ vocab.update(self.added_tokens_encoder)
111
+ return vocab
112
+
113
+ def _tokenize(self, text):
114
+ """Returns a tokenized string."""
115
+ return self.sp_model.encode(text, out_type=str)
116
+
117
+ def _convert_token_to_id(self, token):
118
+ """Converts a token (str) in an id using the vocab."""
119
+ return self.sp_model.piece_to_id(token)
120
+
121
+ def _convert_id_to_token(self, index):
122
+ """Converts an index (integer) in a token (str) using the vocab."""
123
+ token = self.sp_model.IdToPiece(index)
124
+ return token
125
+
126
+ def convert_tokens_to_string(self, tokens):
127
+ """Converts a sequence of tokens (string) in a single string."""
128
+ current_sub_tokens = []
129
+ out_string = ""
130
+ prev_is_special = False
131
+ for i, token in enumerate(tokens):
132
+ # make sure that special tokens are not decoded using sentencepiece model
133
+ if token in self.all_special_tokens:
134
+ if not prev_is_special and i != 0:
135
+ out_string += " "
136
+ out_string += self.sp_model.decode(current_sub_tokens) + token
137
+ prev_is_special = True
138
+ current_sub_tokens = []
139
+ else:
140
+ current_sub_tokens.append(token)
141
+ prev_is_special = False
142
+ out_string += self.sp_model.decode(current_sub_tokens)
143
+ return out_string
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, "wb") as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
174
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
175
+
176
+ output = bos_token_id + token_ids_0 + eos_token_id
177
+
178
+ if token_ids_1 is not None:
179
+ output = output + bos_token_id + token_ids_1 + eos_token_id
180
+
181
+ return output
182
+
183
+ def get_special_tokens_mask(
184
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
185
+ ) -> List[int]:
186
+ """
187
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
188
+ special tokens using the tokenizer `prepare_for_model` method.
189
+
190
+ Args:
191
+ token_ids_0 (`List[int]`):
192
+ List of IDs.
193
+ token_ids_1 (`List[int]`, *optional*):
194
+ Optional second list of IDs for sequence pairs.
195
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
196
+ Whether or not the token list is already formatted with special tokens for the model.
197
+
198
+ Returns:
199
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
200
+ """
201
+ if already_has_special_tokens:
202
+ return super().get_special_tokens_mask(
203
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
204
+ )
205
+
206
+ bos_token_id = [1] if self.add_bos_token else []
207
+ eos_token_id = [1] if self.add_eos_token else []
208
+
209
+ if token_ids_1 is None:
210
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
211
+ return (
212
+ bos_token_id
213
+ + ([0] * len(token_ids_0))
214
+ + eos_token_id
215
+ + bos_token_id
216
+ + ([0] * len(token_ids_1))
217
+ + eos_token_id
218
+ )
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
225
+ sequence pair mask has the following format:
226
+
227
+ ```
228
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
229
+ | first sequence | second sequence |
230
+ ```
231
+
232
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
233
+
234
+ Args:
235
+ token_ids_0 (`List[int]`):
236
+ List of ids.
237
+ token_ids_1 (`List[int]`, *optional*):
238
+ Optional second list of IDs for sequence pairs.
239
+
240
+ Returns:
241
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
242
+ """
243
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
244
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
245
+
246
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
247
+
248
+ if token_ids_1 is not None:
249
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
250
+
251
+ return output
LLM-Detector-V1-4w/checkpoint-1000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
LLM-Detector-V1-4w/checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "split_special_tokens": false,
39
+ "tokenizer_class": "BaichuanTokenizer",
40
+ "unk_token": {
41
+ "__type": "AddedToken",
42
+ "content": "<unk>",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": true
47
+ },
48
+ "use_fast": false
49
+ }
LLM-Detector-V1-4w/checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8496176720475785,
5
+ "eval_steps": 500,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999919851200522e-05,
14
+ "loss": 9.9461,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9996428002198536e-05,
20
+ "loss": 6.4908,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 4.9992242747551964e-05,
26
+ "loss": 3.708,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4.99857130295276e-05,
32
+ "loss": 0.8908,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 4.997720546222574e-05,
38
+ "loss": 0.2454,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 4.996672071909866e-05,
44
+ "loss": 0.1348,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 4.995425963011034e-05,
50
+ "loss": 0.0487,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 4.993982318167074e-05,
56
+ "loss": 0.0282,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 4.992341251655768e-05,
62
+ "loss": 0.0455,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 4.9905028933826435e-05,
68
+ "loss": 0.0472,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 4.988467388870688e-05,
74
+ "loss": 0.0526,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 4.986234899248826e-05,
80
+ "loss": 0.0679,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 4.983805601239172e-05,
86
+ "loss": 0.0314,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 4.981179687143034e-05,
92
+ "loss": 0.0136,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 4.978357364825695e-05,
98
+ "loss": 0.0409,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 4.975338857699956e-05,
104
+ "loss": 0.0284,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.14,
109
+ "learning_rate": 4.972124404708454e-05,
110
+ "loss": 0.0364,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.15,
115
+ "learning_rate": 4.968714260304743e-05,
116
+ "loss": 0.0147,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 4.965108694433159e-05,
122
+ "loss": 0.0174,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 4.961307992507443e-05,
128
+ "loss": 0.0244,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 4.957312455388152e-05,
134
+ "loss": 0.0387,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 4.953122399358845e-05,
140
+ "loss": 0.0264,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 4.948738156101042e-05,
146
+ "loss": 0.0291,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.2,
151
+ "learning_rate": 4.9441600726679694e-05,
152
+ "loss": 0.0214,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.21,
157
+ "learning_rate": 4.939388511457092e-05,
158
+ "loss": 0.0116,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.22,
163
+ "learning_rate": 4.934423850181419e-05,
164
+ "loss": 0.0191,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 4.9292664818396117e-05,
170
+ "loss": 0.0064,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 4.9239168146848666e-05,
176
+ "loss": 0.0184,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 4.9183752721926036e-05,
182
+ "loss": 0.0026,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.25,
187
+ "learning_rate": 4.912642293026942e-05,
188
+ "loss": 0.0223,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.26,
193
+ "learning_rate": 4.906718331005979e-05,
194
+ "loss": 0.0405,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.27,
199
+ "learning_rate": 4.900603855065861e-05,
200
+ "loss": 0.0461,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.28,
205
+ "learning_rate": 4.894299349223665e-05,
206
+ "loss": 0.0199,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 4.8878053125390875e-05,
212
+ "loss": 0.0193,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 4.881122259074935e-05,
218
+ "loss": 0.004,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 4.874250717856433e-05,
224
+ "loss": 0.0018,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.31,
229
+ "learning_rate": 4.867191232829348e-05,
230
+ "loss": 0.0021,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.32,
235
+ "learning_rate": 4.8599443628169295e-05,
236
+ "loss": 0.018,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.33,
241
+ "learning_rate": 4.8525106814756754e-05,
242
+ "loss": 0.0261,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.34,
247
+ "learning_rate": 4.84489077724992e-05,
248
+ "loss": 0.016,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 4.8370852533252536e-05,
254
+ "loss": 0.0402,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 4.8290947275807755e-05,
260
+ "loss": 0.0038,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 4.8209198325401815e-05,
266
+ "loss": 0.008,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.37,
271
+ "learning_rate": 4.8125612153216976e-05,
272
+ "loss": 0.0296,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.38,
277
+ "learning_rate": 4.804019537586849e-05,
278
+ "loss": 0.0012,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.39,
283
+ "learning_rate": 4.7952954754880886e-05,
284
+ "loss": 0.0142,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.4,
289
+ "learning_rate": 4.7863897196152704e-05,
290
+ "loss": 0.0163,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.41,
295
+ "learning_rate": 4.7773029749409836e-05,
296
+ "loss": 0.0021,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 4.76803596076475e-05,
302
+ "loss": 0.0355,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.42,
307
+ "learning_rate": 4.758589410656078e-05,
308
+ "loss": 0.0199,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.42,
313
+ "eval_loss": 0.010466881096363068,
314
+ "eval_runtime": 88.037,
315
+ "eval_samples_per_second": 22.525,
316
+ "eval_steps_per_second": 2.817,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "learning_rate": 4.748964072396403e-05,
322
+ "loss": 0.0341,
323
+ "step": 510
324
+ },
325
+ {
326
+ "epoch": 0.44,
327
+ "learning_rate": 4.7391607079198876e-05,
328
+ "loss": 0.0137,
329
+ "step": 520
330
+ },
331
+ {
332
+ "epoch": 0.45,
333
+ "learning_rate": 4.7291800932531064e-05,
334
+ "loss": 0.0138,
335
+ "step": 530
336
+ },
337
+ {
338
+ "epoch": 0.46,
339
+ "learning_rate": 4.719023018453623e-05,
340
+ "loss": 0.0063,
341
+ "step": 540
342
+ },
343
+ {
344
+ "epoch": 0.47,
345
+ "learning_rate": 4.708690287547441e-05,
346
+ "loss": 0.0376,
347
+ "step": 550
348
+ },
349
+ {
350
+ "epoch": 0.48,
351
+ "learning_rate": 4.698182718465368e-05,
352
+ "loss": 0.006,
353
+ "step": 560
354
+ },
355
+ {
356
+ "epoch": 0.48,
357
+ "learning_rate": 4.687501142978258e-05,
358
+ "loss": 0.0371,
359
+ "step": 570
360
+ },
361
+ {
362
+ "epoch": 0.49,
363
+ "learning_rate": 4.6766464066311765e-05,
364
+ "loss": 0.0322,
365
+ "step": 580
366
+ },
367
+ {
368
+ "epoch": 0.5,
369
+ "learning_rate": 4.665619368676466e-05,
370
+ "loss": 0.0086,
371
+ "step": 590
372
+ },
373
+ {
374
+ "epoch": 0.51,
375
+ "learning_rate": 4.6544209020057285e-05,
376
+ "loss": 0.002,
377
+ "step": 600
378
+ },
379
+ {
380
+ "epoch": 0.52,
381
+ "learning_rate": 4.643051893080725e-05,
382
+ "loss": 0.0147,
383
+ "step": 610
384
+ },
385
+ {
386
+ "epoch": 0.53,
387
+ "learning_rate": 4.631513241863209e-05,
388
+ "loss": 0.0038,
389
+ "step": 620
390
+ },
391
+ {
392
+ "epoch": 0.54,
393
+ "learning_rate": 4.619805861743683e-05,
394
+ "loss": 0.0187,
395
+ "step": 630
396
+ },
397
+ {
398
+ "epoch": 0.54,
399
+ "learning_rate": 4.607930679469096e-05,
400
+ "loss": 0.0063,
401
+ "step": 640
402
+ },
403
+ {
404
+ "epoch": 0.55,
405
+ "learning_rate": 4.595888635069481e-05,
406
+ "loss": 0.0109,
407
+ "step": 650
408
+ },
409
+ {
410
+ "epoch": 0.56,
411
+ "learning_rate": 4.5836806817835475e-05,
412
+ "loss": 0.005,
413
+ "step": 660
414
+ },
415
+ {
416
+ "epoch": 0.57,
417
+ "learning_rate": 4.57130778598322e-05,
418
+ "loss": 0.0167,
419
+ "step": 670
420
+ },
421
+ {
422
+ "epoch": 0.58,
423
+ "learning_rate": 4.5587709270971425e-05,
424
+ "loss": 0.0143,
425
+ "step": 680
426
+ },
427
+ {
428
+ "epoch": 0.59,
429
+ "learning_rate": 4.546071097533145e-05,
430
+ "loss": 0.0015,
431
+ "step": 690
432
+ },
433
+ {
434
+ "epoch": 0.59,
435
+ "learning_rate": 4.533209302599691e-05,
436
+ "loss": 0.0003,
437
+ "step": 700
438
+ },
439
+ {
440
+ "epoch": 0.6,
441
+ "learning_rate": 4.520186560426292e-05,
442
+ "loss": 0.006,
443
+ "step": 710
444
+ },
445
+ {
446
+ "epoch": 0.61,
447
+ "learning_rate": 4.507003901882915e-05,
448
+ "loss": 0.0093,
449
+ "step": 720
450
+ },
451
+ {
452
+ "epoch": 0.62,
453
+ "learning_rate": 4.493662370498383e-05,
454
+ "loss": 0.0046,
455
+ "step": 730
456
+ },
457
+ {
458
+ "epoch": 0.63,
459
+ "learning_rate": 4.4801630223777665e-05,
460
+ "loss": 0.0147,
461
+ "step": 740
462
+ },
463
+ {
464
+ "epoch": 0.64,
465
+ "learning_rate": 4.466506926118782e-05,
466
+ "loss": 0.0102,
467
+ "step": 750
468
+ },
469
+ {
470
+ "epoch": 0.65,
471
+ "learning_rate": 4.4526951627272074e-05,
472
+ "loss": 0.017,
473
+ "step": 760
474
+ },
475
+ {
476
+ "epoch": 0.65,
477
+ "learning_rate": 4.438728825531305e-05,
478
+ "loss": 0.0033,
479
+ "step": 770
480
+ },
481
+ {
482
+ "epoch": 0.66,
483
+ "learning_rate": 4.4246090200952816e-05,
484
+ "loss": 0.0061,
485
+ "step": 780
486
+ },
487
+ {
488
+ "epoch": 0.67,
489
+ "learning_rate": 4.410336864131762e-05,
490
+ "loss": 0.0032,
491
+ "step": 790
492
+ },
493
+ {
494
+ "epoch": 0.68,
495
+ "learning_rate": 4.395913487413324e-05,
496
+ "loss": 0.0043,
497
+ "step": 800
498
+ },
499
+ {
500
+ "epoch": 0.69,
501
+ "learning_rate": 4.3813400316830576e-05,
502
+ "loss": 0.0063,
503
+ "step": 810
504
+ },
505
+ {
506
+ "epoch": 0.7,
507
+ "learning_rate": 4.36661765056419e-05,
508
+ "loss": 0.0273,
509
+ "step": 820
510
+ },
511
+ {
512
+ "epoch": 0.71,
513
+ "learning_rate": 4.351747509468763e-05,
514
+ "loss": 0.0125,
515
+ "step": 830
516
+ },
517
+ {
518
+ "epoch": 0.71,
519
+ "learning_rate": 4.336730785505382e-05,
520
+ "loss": 0.0076,
521
+ "step": 840
522
+ },
523
+ {
524
+ "epoch": 0.72,
525
+ "learning_rate": 4.3215686673860384e-05,
526
+ "loss": 0.0127,
527
+ "step": 850
528
+ },
529
+ {
530
+ "epoch": 0.73,
531
+ "learning_rate": 4.306262355332006e-05,
532
+ "loss": 0.0161,
533
+ "step": 860
534
+ },
535
+ {
536
+ "epoch": 0.74,
537
+ "learning_rate": 4.290813060978839e-05,
538
+ "loss": 0.0169,
539
+ "step": 870
540
+ },
541
+ {
542
+ "epoch": 0.75,
543
+ "learning_rate": 4.2752220072804564e-05,
544
+ "loss": 0.0081,
545
+ "step": 880
546
+ },
547
+ {
548
+ "epoch": 0.76,
549
+ "learning_rate": 4.259490428412335e-05,
550
+ "loss": 0.0131,
551
+ "step": 890
552
+ },
553
+ {
554
+ "epoch": 0.76,
555
+ "learning_rate": 4.243619569673814e-05,
556
+ "loss": 0.0205,
557
+ "step": 900
558
+ },
559
+ {
560
+ "epoch": 0.77,
561
+ "learning_rate": 4.2276106873895143e-05,
562
+ "loss": 0.0026,
563
+ "step": 910
564
+ },
565
+ {
566
+ "epoch": 0.78,
567
+ "learning_rate": 4.2114650488098936e-05,
568
+ "loss": 0.018,
569
+ "step": 920
570
+ },
571
+ {
572
+ "epoch": 0.79,
573
+ "learning_rate": 4.19518393201093e-05,
574
+ "loss": 0.0083,
575
+ "step": 930
576
+ },
577
+ {
578
+ "epoch": 0.8,
579
+ "learning_rate": 4.178768625792949e-05,
580
+ "loss": 0.0291,
581
+ "step": 940
582
+ },
583
+ {
584
+ "epoch": 0.81,
585
+ "learning_rate": 4.162220429578605e-05,
586
+ "loss": 0.0226,
587
+ "step": 950
588
+ },
589
+ {
590
+ "epoch": 0.82,
591
+ "learning_rate": 4.145540653310018e-05,
592
+ "loss": 0.0042,
593
+ "step": 960
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 4.128730617345084e-05,
598
+ "loss": 0.0078,
599
+ "step": 970
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 4.111791652352952e-05,
604
+ "loss": 0.0084,
605
+ "step": 980
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 4.094725099208688e-05,
610
+ "loss": 0.0044,
611
+ "step": 990
612
+ },
613
+ {
614
+ "epoch": 0.85,
615
+ "learning_rate": 4.077532308887141e-05,
616
+ "loss": 0.0011,
617
+ "step": 1000
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "eval_loss": 0.01175768580287695,
622
+ "eval_runtime": 88.0904,
623
+ "eval_samples_per_second": 22.511,
624
+ "eval_steps_per_second": 2.815,
625
+ "step": 1000
626
+ }
627
+ ],
628
+ "logging_steps": 10,
629
+ "max_steps": 3531,
630
+ "num_train_epochs": 3,
631
+ "save_steps": 1000,
632
+ "total_flos": 1.5022667366085427e+17,
633
+ "trial_name": null,
634
+ "trial_params": null
635
+ }
LLM-Detector-V1-4w/checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
3
+ size 4664
LLM-Detector-V1-4w/checkpoint-2000/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../Baichuan2-7B-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: float16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
LLM-Detector-V1-4w/checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32.0,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "W_pack"
20
+ ],
21
+ "task_type": "CAUSAL_LM"
22
+ }
LLM-Detector-V1-4w/checkpoint-2000/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9664fcda9f9455692ac077930f9807e40a74bbb1391a6cc8dff6f1da2753d7b7
3
+ size 16800430
LLM-Detector-V1-4w/checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e1df2c7ebe4ba45177d9926132b2249e61306c5a47e8594117807499496934
3
+ size 33608634
LLM-Detector-V1-4w/checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efd859252932a9e3ea8978d62ba6b8ca255ea2df13637ed0a28deb7bd5f76e91
3
+ size 14244
LLM-Detector-V1-4w/checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dd0fc895c7505f36c0d10a7fb566f688f4529581ce3e22f1659966dcc265a99
3
+ size 1064
LLM-Detector-V1-4w/checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
LLM-Detector-V1-4w/checkpoint-2000/tokenization_baichuan.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ add_bos_token=add_bos_token,
81
+ add_eos_token=add_eos_token,
82
+ sp_model_kwargs=self.sp_model_kwargs,
83
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
+ **kwargs,
85
+ )
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.Load(vocab_file)
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ self.sp_model.Load(self.vocab_file)
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ def get_vocab(self):
108
+ """Returns vocab as a dict"""
109
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
110
+ vocab.update(self.added_tokens_encoder)
111
+ return vocab
112
+
113
+ def _tokenize(self, text):
114
+ """Returns a tokenized string."""
115
+ return self.sp_model.encode(text, out_type=str)
116
+
117
+ def _convert_token_to_id(self, token):
118
+ """Converts a token (str) in an id using the vocab."""
119
+ return self.sp_model.piece_to_id(token)
120
+
121
+ def _convert_id_to_token(self, index):
122
+ """Converts an index (integer) in a token (str) using the vocab."""
123
+ token = self.sp_model.IdToPiece(index)
124
+ return token
125
+
126
+ def convert_tokens_to_string(self, tokens):
127
+ """Converts a sequence of tokens (string) in a single string."""
128
+ current_sub_tokens = []
129
+ out_string = ""
130
+ prev_is_special = False
131
+ for i, token in enumerate(tokens):
132
+ # make sure that special tokens are not decoded using sentencepiece model
133
+ if token in self.all_special_tokens:
134
+ if not prev_is_special and i != 0:
135
+ out_string += " "
136
+ out_string += self.sp_model.decode(current_sub_tokens) + token
137
+ prev_is_special = True
138
+ current_sub_tokens = []
139
+ else:
140
+ current_sub_tokens.append(token)
141
+ prev_is_special = False
142
+ out_string += self.sp_model.decode(current_sub_tokens)
143
+ return out_string
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, "wb") as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
174
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
175
+
176
+ output = bos_token_id + token_ids_0 + eos_token_id
177
+
178
+ if token_ids_1 is not None:
179
+ output = output + bos_token_id + token_ids_1 + eos_token_id
180
+
181
+ return output
182
+
183
+ def get_special_tokens_mask(
184
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
185
+ ) -> List[int]:
186
+ """
187
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
188
+ special tokens using the tokenizer `prepare_for_model` method.
189
+
190
+ Args:
191
+ token_ids_0 (`List[int]`):
192
+ List of IDs.
193
+ token_ids_1 (`List[int]`, *optional*):
194
+ Optional second list of IDs for sequence pairs.
195
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
196
+ Whether or not the token list is already formatted with special tokens for the model.
197
+
198
+ Returns:
199
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
200
+ """
201
+ if already_has_special_tokens:
202
+ return super().get_special_tokens_mask(
203
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
204
+ )
205
+
206
+ bos_token_id = [1] if self.add_bos_token else []
207
+ eos_token_id = [1] if self.add_eos_token else []
208
+
209
+ if token_ids_1 is None:
210
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
211
+ return (
212
+ bos_token_id
213
+ + ([0] * len(token_ids_0))
214
+ + eos_token_id
215
+ + bos_token_id
216
+ + ([0] * len(token_ids_1))
217
+ + eos_token_id
218
+ )
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
225
+ sequence pair mask has the following format:
226
+
227
+ ```
228
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
229
+ | first sequence | second sequence |
230
+ ```
231
+
232
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
233
+
234
+ Args:
235
+ token_ids_0 (`List[int]`):
236
+ List of ids.
237
+ token_ids_1 (`List[int]`, *optional*):
238
+ Optional second list of IDs for sequence pairs.
239
+
240
+ Returns:
241
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
242
+ """
243
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
244
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
245
+
246
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
247
+
248
+ if token_ids_1 is not None:
249
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
250
+
251
+ return output
LLM-Detector-V1-4w/checkpoint-2000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
LLM-Detector-V1-4w/checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "split_special_tokens": false,
39
+ "tokenizer_class": "BaichuanTokenizer",
40
+ "unk_token": {
41
+ "__type": "AddedToken",
42
+ "content": "<unk>",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": true
47
+ },
48
+ "use_fast": false
49
+ }
LLM-Detector-V1-4w/checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,1251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.699235344095157,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999919851200522e-05,
14
+ "loss": 9.9461,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9996428002198536e-05,
20
+ "loss": 6.4908,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 4.9992242747551964e-05,
26
+ "loss": 3.708,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4.99857130295276e-05,
32
+ "loss": 0.8908,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 4.997720546222574e-05,
38
+ "loss": 0.2454,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 4.996672071909866e-05,
44
+ "loss": 0.1348,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 4.995425963011034e-05,
50
+ "loss": 0.0487,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 4.993982318167074e-05,
56
+ "loss": 0.0282,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 4.992341251655768e-05,
62
+ "loss": 0.0455,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 4.9905028933826435e-05,
68
+ "loss": 0.0472,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 4.988467388870688e-05,
74
+ "loss": 0.0526,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 4.986234899248826e-05,
80
+ "loss": 0.0679,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 4.983805601239172e-05,
86
+ "loss": 0.0314,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 4.981179687143034e-05,
92
+ "loss": 0.0136,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 4.978357364825695e-05,
98
+ "loss": 0.0409,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 4.975338857699956e-05,
104
+ "loss": 0.0284,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.14,
109
+ "learning_rate": 4.972124404708454e-05,
110
+ "loss": 0.0364,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.15,
115
+ "learning_rate": 4.968714260304743e-05,
116
+ "loss": 0.0147,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 4.965108694433159e-05,
122
+ "loss": 0.0174,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 4.961307992507443e-05,
128
+ "loss": 0.0244,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 4.957312455388152e-05,
134
+ "loss": 0.0387,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 4.953122399358845e-05,
140
+ "loss": 0.0264,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 4.948738156101042e-05,
146
+ "loss": 0.0291,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.2,
151
+ "learning_rate": 4.9441600726679694e-05,
152
+ "loss": 0.0214,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.21,
157
+ "learning_rate": 4.939388511457092e-05,
158
+ "loss": 0.0116,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.22,
163
+ "learning_rate": 4.934423850181419e-05,
164
+ "loss": 0.0191,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 4.9292664818396117e-05,
170
+ "loss": 0.0064,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 4.9239168146848666e-05,
176
+ "loss": 0.0184,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 4.9183752721926036e-05,
182
+ "loss": 0.0026,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.25,
187
+ "learning_rate": 4.912642293026942e-05,
188
+ "loss": 0.0223,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.26,
193
+ "learning_rate": 4.906718331005979e-05,
194
+ "loss": 0.0405,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.27,
199
+ "learning_rate": 4.900603855065861e-05,
200
+ "loss": 0.0461,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.28,
205
+ "learning_rate": 4.894299349223665e-05,
206
+ "loss": 0.0199,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 4.8878053125390875e-05,
212
+ "loss": 0.0193,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 4.881122259074935e-05,
218
+ "loss": 0.004,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 4.874250717856433e-05,
224
+ "loss": 0.0018,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.31,
229
+ "learning_rate": 4.867191232829348e-05,
230
+ "loss": 0.0021,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.32,
235
+ "learning_rate": 4.8599443628169295e-05,
236
+ "loss": 0.018,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.33,
241
+ "learning_rate": 4.8525106814756754e-05,
242
+ "loss": 0.0261,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.34,
247
+ "learning_rate": 4.84489077724992e-05,
248
+ "loss": 0.016,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 4.8370852533252536e-05,
254
+ "loss": 0.0402,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 4.8290947275807755e-05,
260
+ "loss": 0.0038,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 4.8209198325401815e-05,
266
+ "loss": 0.008,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.37,
271
+ "learning_rate": 4.8125612153216976e-05,
272
+ "loss": 0.0296,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.38,
277
+ "learning_rate": 4.804019537586849e-05,
278
+ "loss": 0.0012,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.39,
283
+ "learning_rate": 4.7952954754880886e-05,
284
+ "loss": 0.0142,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.4,
289
+ "learning_rate": 4.7863897196152704e-05,
290
+ "loss": 0.0163,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.41,
295
+ "learning_rate": 4.7773029749409836e-05,
296
+ "loss": 0.0021,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 4.76803596076475e-05,
302
+ "loss": 0.0355,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.42,
307
+ "learning_rate": 4.758589410656078e-05,
308
+ "loss": 0.0199,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.42,
313
+ "eval_loss": 0.010466881096363068,
314
+ "eval_runtime": 88.037,
315
+ "eval_samples_per_second": 22.525,
316
+ "eval_steps_per_second": 2.817,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "learning_rate": 4.748964072396403e-05,
322
+ "loss": 0.0341,
323
+ "step": 510
324
+ },
325
+ {
326
+ "epoch": 0.44,
327
+ "learning_rate": 4.7391607079198876e-05,
328
+ "loss": 0.0137,
329
+ "step": 520
330
+ },
331
+ {
332
+ "epoch": 0.45,
333
+ "learning_rate": 4.7291800932531064e-05,
334
+ "loss": 0.0138,
335
+ "step": 530
336
+ },
337
+ {
338
+ "epoch": 0.46,
339
+ "learning_rate": 4.719023018453623e-05,
340
+ "loss": 0.0063,
341
+ "step": 540
342
+ },
343
+ {
344
+ "epoch": 0.47,
345
+ "learning_rate": 4.708690287547441e-05,
346
+ "loss": 0.0376,
347
+ "step": 550
348
+ },
349
+ {
350
+ "epoch": 0.48,
351
+ "learning_rate": 4.698182718465368e-05,
352
+ "loss": 0.006,
353
+ "step": 560
354
+ },
355
+ {
356
+ "epoch": 0.48,
357
+ "learning_rate": 4.687501142978258e-05,
358
+ "loss": 0.0371,
359
+ "step": 570
360
+ },
361
+ {
362
+ "epoch": 0.49,
363
+ "learning_rate": 4.6766464066311765e-05,
364
+ "loss": 0.0322,
365
+ "step": 580
366
+ },
367
+ {
368
+ "epoch": 0.5,
369
+ "learning_rate": 4.665619368676466e-05,
370
+ "loss": 0.0086,
371
+ "step": 590
372
+ },
373
+ {
374
+ "epoch": 0.51,
375
+ "learning_rate": 4.6544209020057285e-05,
376
+ "loss": 0.002,
377
+ "step": 600
378
+ },
379
+ {
380
+ "epoch": 0.52,
381
+ "learning_rate": 4.643051893080725e-05,
382
+ "loss": 0.0147,
383
+ "step": 610
384
+ },
385
+ {
386
+ "epoch": 0.53,
387
+ "learning_rate": 4.631513241863209e-05,
388
+ "loss": 0.0038,
389
+ "step": 620
390
+ },
391
+ {
392
+ "epoch": 0.54,
393
+ "learning_rate": 4.619805861743683e-05,
394
+ "loss": 0.0187,
395
+ "step": 630
396
+ },
397
+ {
398
+ "epoch": 0.54,
399
+ "learning_rate": 4.607930679469096e-05,
400
+ "loss": 0.0063,
401
+ "step": 640
402
+ },
403
+ {
404
+ "epoch": 0.55,
405
+ "learning_rate": 4.595888635069481e-05,
406
+ "loss": 0.0109,
407
+ "step": 650
408
+ },
409
+ {
410
+ "epoch": 0.56,
411
+ "learning_rate": 4.5836806817835475e-05,
412
+ "loss": 0.005,
413
+ "step": 660
414
+ },
415
+ {
416
+ "epoch": 0.57,
417
+ "learning_rate": 4.57130778598322e-05,
418
+ "loss": 0.0167,
419
+ "step": 670
420
+ },
421
+ {
422
+ "epoch": 0.58,
423
+ "learning_rate": 4.5587709270971425e-05,
424
+ "loss": 0.0143,
425
+ "step": 680
426
+ },
427
+ {
428
+ "epoch": 0.59,
429
+ "learning_rate": 4.546071097533145e-05,
430
+ "loss": 0.0015,
431
+ "step": 690
432
+ },
433
+ {
434
+ "epoch": 0.59,
435
+ "learning_rate": 4.533209302599691e-05,
436
+ "loss": 0.0003,
437
+ "step": 700
438
+ },
439
+ {
440
+ "epoch": 0.6,
441
+ "learning_rate": 4.520186560426292e-05,
442
+ "loss": 0.006,
443
+ "step": 710
444
+ },
445
+ {
446
+ "epoch": 0.61,
447
+ "learning_rate": 4.507003901882915e-05,
448
+ "loss": 0.0093,
449
+ "step": 720
450
+ },
451
+ {
452
+ "epoch": 0.62,
453
+ "learning_rate": 4.493662370498383e-05,
454
+ "loss": 0.0046,
455
+ "step": 730
456
+ },
457
+ {
458
+ "epoch": 0.63,
459
+ "learning_rate": 4.4801630223777665e-05,
460
+ "loss": 0.0147,
461
+ "step": 740
462
+ },
463
+ {
464
+ "epoch": 0.64,
465
+ "learning_rate": 4.466506926118782e-05,
466
+ "loss": 0.0102,
467
+ "step": 750
468
+ },
469
+ {
470
+ "epoch": 0.65,
471
+ "learning_rate": 4.4526951627272074e-05,
472
+ "loss": 0.017,
473
+ "step": 760
474
+ },
475
+ {
476
+ "epoch": 0.65,
477
+ "learning_rate": 4.438728825531305e-05,
478
+ "loss": 0.0033,
479
+ "step": 770
480
+ },
481
+ {
482
+ "epoch": 0.66,
483
+ "learning_rate": 4.4246090200952816e-05,
484
+ "loss": 0.0061,
485
+ "step": 780
486
+ },
487
+ {
488
+ "epoch": 0.67,
489
+ "learning_rate": 4.410336864131762e-05,
490
+ "loss": 0.0032,
491
+ "step": 790
492
+ },
493
+ {
494
+ "epoch": 0.68,
495
+ "learning_rate": 4.395913487413324e-05,
496
+ "loss": 0.0043,
497
+ "step": 800
498
+ },
499
+ {
500
+ "epoch": 0.69,
501
+ "learning_rate": 4.3813400316830576e-05,
502
+ "loss": 0.0063,
503
+ "step": 810
504
+ },
505
+ {
506
+ "epoch": 0.7,
507
+ "learning_rate": 4.36661765056419e-05,
508
+ "loss": 0.0273,
509
+ "step": 820
510
+ },
511
+ {
512
+ "epoch": 0.71,
513
+ "learning_rate": 4.351747509468763e-05,
514
+ "loss": 0.0125,
515
+ "step": 830
516
+ },
517
+ {
518
+ "epoch": 0.71,
519
+ "learning_rate": 4.336730785505382e-05,
520
+ "loss": 0.0076,
521
+ "step": 840
522
+ },
523
+ {
524
+ "epoch": 0.72,
525
+ "learning_rate": 4.3215686673860384e-05,
526
+ "loss": 0.0127,
527
+ "step": 850
528
+ },
529
+ {
530
+ "epoch": 0.73,
531
+ "learning_rate": 4.306262355332006e-05,
532
+ "loss": 0.0161,
533
+ "step": 860
534
+ },
535
+ {
536
+ "epoch": 0.74,
537
+ "learning_rate": 4.290813060978839e-05,
538
+ "loss": 0.0169,
539
+ "step": 870
540
+ },
541
+ {
542
+ "epoch": 0.75,
543
+ "learning_rate": 4.2752220072804564e-05,
544
+ "loss": 0.0081,
545
+ "step": 880
546
+ },
547
+ {
548
+ "epoch": 0.76,
549
+ "learning_rate": 4.259490428412335e-05,
550
+ "loss": 0.0131,
551
+ "step": 890
552
+ },
553
+ {
554
+ "epoch": 0.76,
555
+ "learning_rate": 4.243619569673814e-05,
556
+ "loss": 0.0205,
557
+ "step": 900
558
+ },
559
+ {
560
+ "epoch": 0.77,
561
+ "learning_rate": 4.2276106873895143e-05,
562
+ "loss": 0.0026,
563
+ "step": 910
564
+ },
565
+ {
566
+ "epoch": 0.78,
567
+ "learning_rate": 4.2114650488098936e-05,
568
+ "loss": 0.018,
569
+ "step": 920
570
+ },
571
+ {
572
+ "epoch": 0.79,
573
+ "learning_rate": 4.19518393201093e-05,
574
+ "loss": 0.0083,
575
+ "step": 930
576
+ },
577
+ {
578
+ "epoch": 0.8,
579
+ "learning_rate": 4.178768625792949e-05,
580
+ "loss": 0.0291,
581
+ "step": 940
582
+ },
583
+ {
584
+ "epoch": 0.81,
585
+ "learning_rate": 4.162220429578605e-05,
586
+ "loss": 0.0226,
587
+ "step": 950
588
+ },
589
+ {
590
+ "epoch": 0.82,
591
+ "learning_rate": 4.145540653310018e-05,
592
+ "loss": 0.0042,
593
+ "step": 960
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 4.128730617345084e-05,
598
+ "loss": 0.0078,
599
+ "step": 970
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 4.111791652352952e-05,
604
+ "loss": 0.0084,
605
+ "step": 980
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 4.094725099208688e-05,
610
+ "loss": 0.0044,
611
+ "step": 990
612
+ },
613
+ {
614
+ "epoch": 0.85,
615
+ "learning_rate": 4.077532308887141e-05,
616
+ "loss": 0.0011,
617
+ "step": 1000
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "eval_loss": 0.01175768580287695,
622
+ "eval_runtime": 88.0904,
623
+ "eval_samples_per_second": 22.511,
624
+ "eval_steps_per_second": 2.815,
625
+ "step": 1000
626
+ },
627
+ {
628
+ "epoch": 0.86,
629
+ "learning_rate": 4.060214642355989e-05,
630
+ "loss": 0.0011,
631
+ "step": 1010
632
+ },
633
+ {
634
+ "epoch": 0.87,
635
+ "learning_rate": 4.042773470468016e-05,
636
+ "loss": 0.021,
637
+ "step": 1020
638
+ },
639
+ {
640
+ "epoch": 0.88,
641
+ "learning_rate": 4.0252101738525916e-05,
642
+ "loss": 0.0424,
643
+ "step": 1030
644
+ },
645
+ {
646
+ "epoch": 0.88,
647
+ "learning_rate": 4.0075261428063806e-05,
648
+ "loss": 0.0194,
649
+ "step": 1040
650
+ },
651
+ {
652
+ "epoch": 0.89,
653
+ "learning_rate": 3.9897227771832924e-05,
654
+ "loss": 0.0025,
655
+ "step": 1050
656
+ },
657
+ {
658
+ "epoch": 0.9,
659
+ "learning_rate": 3.971801486283665e-05,
660
+ "loss": 0.0044,
661
+ "step": 1060
662
+ },
663
+ {
664
+ "epoch": 0.91,
665
+ "learning_rate": 3.953763688742708e-05,
666
+ "loss": 0.0051,
667
+ "step": 1070
668
+ },
669
+ {
670
+ "epoch": 0.92,
671
+ "learning_rate": 3.9356108124182067e-05,
672
+ "loss": 0.0071,
673
+ "step": 1080
674
+ },
675
+ {
676
+ "epoch": 0.93,
677
+ "learning_rate": 3.9173442942774885e-05,
678
+ "loss": 0.0145,
679
+ "step": 1090
680
+ },
681
+ {
682
+ "epoch": 0.93,
683
+ "learning_rate": 3.898965580283681e-05,
684
+ "loss": 0.0371,
685
+ "step": 1100
686
+ },
687
+ {
688
+ "epoch": 0.94,
689
+ "learning_rate": 3.880476125281244e-05,
690
+ "loss": 0.0076,
691
+ "step": 1110
692
+ },
693
+ {
694
+ "epoch": 0.95,
695
+ "learning_rate": 3.861877392880808e-05,
696
+ "loss": 0.0035,
697
+ "step": 1120
698
+ },
699
+ {
700
+ "epoch": 0.96,
701
+ "learning_rate": 3.843170855343317e-05,
702
+ "loss": 0.008,
703
+ "step": 1130
704
+ },
705
+ {
706
+ "epoch": 0.97,
707
+ "learning_rate": 3.8243579934634846e-05,
708
+ "loss": 0.0089,
709
+ "step": 1140
710
+ },
711
+ {
712
+ "epoch": 0.98,
713
+ "learning_rate": 3.805440296452574e-05,
714
+ "loss": 0.0034,
715
+ "step": 1150
716
+ },
717
+ {
718
+ "epoch": 0.99,
719
+ "learning_rate": 3.786419261820514e-05,
720
+ "loss": 0.0019,
721
+ "step": 1160
722
+ },
723
+ {
724
+ "epoch": 0.99,
725
+ "learning_rate": 3.7672963952573614e-05,
726
+ "loss": 0.0164,
727
+ "step": 1170
728
+ },
729
+ {
730
+ "epoch": 1.0,
731
+ "learning_rate": 3.748073210514102e-05,
732
+ "loss": 0.0012,
733
+ "step": 1180
734
+ },
735
+ {
736
+ "epoch": 1.01,
737
+ "learning_rate": 3.728751229282836e-05,
738
+ "loss": 0.0072,
739
+ "step": 1190
740
+ },
741
+ {
742
+ "epoch": 1.02,
743
+ "learning_rate": 3.70933198107631e-05,
744
+ "loss": 0.0041,
745
+ "step": 1200
746
+ },
747
+ {
748
+ "epoch": 1.03,
749
+ "learning_rate": 3.689817003106852e-05,
750
+ "loss": 0.0021,
751
+ "step": 1210
752
+ },
753
+ {
754
+ "epoch": 1.04,
755
+ "learning_rate": 3.670207840164678e-05,
756
+ "loss": 0.0024,
757
+ "step": 1220
758
+ },
759
+ {
760
+ "epoch": 1.05,
761
+ "learning_rate": 3.650506044495615e-05,
762
+ "loss": 0.0026,
763
+ "step": 1230
764
+ },
765
+ {
766
+ "epoch": 1.05,
767
+ "learning_rate": 3.630713175678222e-05,
768
+ "loss": 0.005,
769
+ "step": 1240
770
+ },
771
+ {
772
+ "epoch": 1.06,
773
+ "learning_rate": 3.610830800500335e-05,
774
+ "loss": 0.0069,
775
+ "step": 1250
776
+ },
777
+ {
778
+ "epoch": 1.07,
779
+ "learning_rate": 3.590860492835046e-05,
780
+ "loss": 0.0081,
781
+ "step": 1260
782
+ },
783
+ {
784
+ "epoch": 1.08,
785
+ "learning_rate": 3.5708038335161134e-05,
786
+ "loss": 0.0107,
787
+ "step": 1270
788
+ },
789
+ {
790
+ "epoch": 1.09,
791
+ "learning_rate": 3.550662410212819e-05,
792
+ "loss": 0.0074,
793
+ "step": 1280
794
+ },
795
+ {
796
+ "epoch": 1.1,
797
+ "learning_rate": 3.5304378173043e-05,
798
+ "loss": 0.0048,
799
+ "step": 1290
800
+ },
801
+ {
802
+ "epoch": 1.1,
803
+ "learning_rate": 3.5101316557533294e-05,
804
+ "loss": 0.0006,
805
+ "step": 1300
806
+ },
807
+ {
808
+ "epoch": 1.11,
809
+ "learning_rate": 3.489745532979593e-05,
810
+ "loss": 0.0076,
811
+ "step": 1310
812
+ },
813
+ {
814
+ "epoch": 1.12,
815
+ "learning_rate": 3.469281062732442e-05,
816
+ "loss": 0.0002,
817
+ "step": 1320
818
+ },
819
+ {
820
+ "epoch": 1.13,
821
+ "learning_rate": 3.448739864963154e-05,
822
+ "loss": 0.0073,
823
+ "step": 1330
824
+ },
825
+ {
826
+ "epoch": 1.14,
827
+ "learning_rate": 3.4281235656966915e-05,
828
+ "loss": 0.0008,
829
+ "step": 1340
830
+ },
831
+ {
832
+ "epoch": 1.15,
833
+ "learning_rate": 3.4074337969029965e-05,
834
+ "loss": 0.001,
835
+ "step": 1350
836
+ },
837
+ {
838
+ "epoch": 1.16,
839
+ "learning_rate": 3.386672196367799e-05,
840
+ "loss": 0.0047,
841
+ "step": 1360
842
+ },
843
+ {
844
+ "epoch": 1.16,
845
+ "learning_rate": 3.365840407562974e-05,
846
+ "loss": 0.0131,
847
+ "step": 1370
848
+ },
849
+ {
850
+ "epoch": 1.17,
851
+ "learning_rate": 3.3449400795164416e-05,
852
+ "loss": 0.001,
853
+ "step": 1380
854
+ },
855
+ {
856
+ "epoch": 1.18,
857
+ "learning_rate": 3.323972866681637e-05,
858
+ "loss": 0.0058,
859
+ "step": 1390
860
+ },
861
+ {
862
+ "epoch": 1.19,
863
+ "learning_rate": 3.3029404288065426e-05,
864
+ "loss": 0.0047,
865
+ "step": 1400
866
+ },
867
+ {
868
+ "epoch": 1.2,
869
+ "learning_rate": 3.2818444308023e-05,
870
+ "loss": 0.0029,
871
+ "step": 1410
872
+ },
873
+ {
874
+ "epoch": 1.21,
875
+ "learning_rate": 3.2606865426114234e-05,
876
+ "loss": 0.0073,
877
+ "step": 1420
878
+ },
879
+ {
880
+ "epoch": 1.21,
881
+ "learning_rate": 3.239468439075604e-05,
882
+ "loss": 0.0006,
883
+ "step": 1430
884
+ },
885
+ {
886
+ "epoch": 1.22,
887
+ "learning_rate": 3.2181917998031326e-05,
888
+ "loss": 0.0028,
889
+ "step": 1440
890
+ },
891
+ {
892
+ "epoch": 1.23,
893
+ "learning_rate": 3.196858309035941e-05,
894
+ "loss": 0.0003,
895
+ "step": 1450
896
+ },
897
+ {
898
+ "epoch": 1.24,
899
+ "learning_rate": 3.175469655516284e-05,
900
+ "loss": 0.0007,
901
+ "step": 1460
902
+ },
903
+ {
904
+ "epoch": 1.25,
905
+ "learning_rate": 3.154027532353052e-05,
906
+ "loss": 0.0037,
907
+ "step": 1470
908
+ },
909
+ {
910
+ "epoch": 1.26,
911
+ "learning_rate": 3.132533636887753e-05,
912
+ "loss": 0.0065,
913
+ "step": 1480
914
+ },
915
+ {
916
+ "epoch": 1.27,
917
+ "learning_rate": 3.1109896705601485e-05,
918
+ "loss": 0.0092,
919
+ "step": 1490
920
+ },
921
+ {
922
+ "epoch": 1.27,
923
+ "learning_rate": 3.0893973387735687e-05,
924
+ "loss": 0.0001,
925
+ "step": 1500
926
+ },
927
+ {
928
+ "epoch": 1.27,
929
+ "eval_loss": 0.010954583063721657,
930
+ "eval_runtime": 88.0029,
931
+ "eval_samples_per_second": 22.533,
932
+ "eval_steps_per_second": 2.818,
933
+ "step": 1500
934
+ },
935
+ {
936
+ "epoch": 1.28,
937
+ "learning_rate": 3.067758350759917e-05,
938
+ "loss": 0.0002,
939
+ "step": 1510
940
+ },
941
+ {
942
+ "epoch": 1.29,
943
+ "learning_rate": 3.046074419444366e-05,
944
+ "loss": 0.0004,
945
+ "step": 1520
946
+ },
947
+ {
948
+ "epoch": 1.3,
949
+ "learning_rate": 3.0243472613097656e-05,
950
+ "loss": 0.001,
951
+ "step": 1530
952
+ },
953
+ {
954
+ "epoch": 1.31,
955
+ "learning_rate": 3.002578596260765e-05,
956
+ "loss": 0.0001,
957
+ "step": 1540
958
+ },
959
+ {
960
+ "epoch": 1.32,
961
+ "learning_rate": 2.980770147487668e-05,
962
+ "loss": 0.0086,
963
+ "step": 1550
964
+ },
965
+ {
966
+ "epoch": 1.33,
967
+ "learning_rate": 2.958923641330028e-05,
968
+ "loss": 0.0021,
969
+ "step": 1560
970
+ },
971
+ {
972
+ "epoch": 1.33,
973
+ "learning_rate": 2.9370408071399898e-05,
974
+ "loss": 0.0001,
975
+ "step": 1570
976
+ },
977
+ {
978
+ "epoch": 1.34,
979
+ "learning_rate": 2.9151233771453956e-05,
980
+ "loss": 0.0076,
981
+ "step": 1580
982
+ },
983
+ {
984
+ "epoch": 1.35,
985
+ "learning_rate": 2.8931730863126666e-05,
986
+ "loss": 0.0001,
987
+ "step": 1590
988
+ },
989
+ {
990
+ "epoch": 1.36,
991
+ "learning_rate": 2.871191672209459e-05,
992
+ "loss": 0.0001,
993
+ "step": 1600
994
+ },
995
+ {
996
+ "epoch": 1.37,
997
+ "learning_rate": 2.8491808748671255e-05,
998
+ "loss": 0.0001,
999
+ "step": 1610
1000
+ },
1001
+ {
1002
+ "epoch": 1.38,
1003
+ "learning_rate": 2.8271424366429706e-05,
1004
+ "loss": 0.0115,
1005
+ "step": 1620
1006
+ },
1007
+ {
1008
+ "epoch": 1.38,
1009
+ "learning_rate": 2.8050781020823296e-05,
1010
+ "loss": 0.0001,
1011
+ "step": 1630
1012
+ },
1013
+ {
1014
+ "epoch": 1.39,
1015
+ "learning_rate": 2.7829896177804716e-05,
1016
+ "loss": 0.0003,
1017
+ "step": 1640
1018
+ },
1019
+ {
1020
+ "epoch": 1.4,
1021
+ "learning_rate": 2.760878732244339e-05,
1022
+ "loss": 0.0003,
1023
+ "step": 1650
1024
+ },
1025
+ {
1026
+ "epoch": 1.41,
1027
+ "learning_rate": 2.7387471957541405e-05,
1028
+ "loss": 0.0024,
1029
+ "step": 1660
1030
+ },
1031
+ {
1032
+ "epoch": 1.42,
1033
+ "learning_rate": 2.7165967602247964e-05,
1034
+ "loss": 0.0005,
1035
+ "step": 1670
1036
+ },
1037
+ {
1038
+ "epoch": 1.43,
1039
+ "learning_rate": 2.694429179067261e-05,
1040
+ "loss": 0.0018,
1041
+ "step": 1680
1042
+ },
1043
+ {
1044
+ "epoch": 1.44,
1045
+ "learning_rate": 2.6744651468034758e-05,
1046
+ "loss": 0.002,
1047
+ "step": 1690
1048
+ },
1049
+ {
1050
+ "epoch": 1.44,
1051
+ "learning_rate": 2.6522698243485527e-05,
1052
+ "loss": 0.0001,
1053
+ "step": 1700
1054
+ },
1055
+ {
1056
+ "epoch": 1.45,
1057
+ "learning_rate": 2.6300624483347926e-05,
1058
+ "loss": 0.0058,
1059
+ "step": 1710
1060
+ },
1061
+ {
1062
+ "epoch": 1.46,
1063
+ "learning_rate": 2.607844776680513e-05,
1064
+ "loss": 0.0001,
1065
+ "step": 1720
1066
+ },
1067
+ {
1068
+ "epoch": 1.47,
1069
+ "learning_rate": 2.585618568119027e-05,
1070
+ "loss": 0.0001,
1071
+ "step": 1730
1072
+ },
1073
+ {
1074
+ "epoch": 1.48,
1075
+ "learning_rate": 2.56338558205942e-05,
1076
+ "loss": 0.0008,
1077
+ "step": 1740
1078
+ },
1079
+ {
1080
+ "epoch": 1.49,
1081
+ "learning_rate": 2.5411475784472805e-05,
1082
+ "loss": 0.0002,
1083
+ "step": 1750
1084
+ },
1085
+ {
1086
+ "epoch": 1.5,
1087
+ "learning_rate": 2.5189063176253825e-05,
1088
+ "loss": 0.0001,
1089
+ "step": 1760
1090
+ },
1091
+ {
1092
+ "epoch": 1.5,
1093
+ "learning_rate": 2.496663560194338e-05,
1094
+ "loss": 0.0001,
1095
+ "step": 1770
1096
+ },
1097
+ {
1098
+ "epoch": 1.51,
1099
+ "learning_rate": 2.4744210668732295e-05,
1100
+ "loss": 0.0001,
1101
+ "step": 1780
1102
+ },
1103
+ {
1104
+ "epoch": 1.52,
1105
+ "learning_rate": 2.452180598360232e-05,
1106
+ "loss": 0.0001,
1107
+ "step": 1790
1108
+ },
1109
+ {
1110
+ "epoch": 1.53,
1111
+ "learning_rate": 2.429943915193239e-05,
1112
+ "loss": 0.0,
1113
+ "step": 1800
1114
+ },
1115
+ {
1116
+ "epoch": 1.54,
1117
+ "learning_rate": 2.4077127776104984e-05,
1118
+ "loss": 0.0146,
1119
+ "step": 1810
1120
+ },
1121
+ {
1122
+ "epoch": 1.55,
1123
+ "learning_rate": 2.3854889454112748e-05,
1124
+ "loss": 0.0017,
1125
+ "step": 1820
1126
+ },
1127
+ {
1128
+ "epoch": 1.55,
1129
+ "learning_rate": 2.3632741778165442e-05,
1130
+ "loss": 0.0001,
1131
+ "step": 1830
1132
+ },
1133
+ {
1134
+ "epoch": 1.56,
1135
+ "learning_rate": 2.3410702333297356e-05,
1136
+ "loss": 0.0001,
1137
+ "step": 1840
1138
+ },
1139
+ {
1140
+ "epoch": 1.57,
1141
+ "learning_rate": 2.318878869597528e-05,
1142
+ "loss": 0.0001,
1143
+ "step": 1850
1144
+ },
1145
+ {
1146
+ "epoch": 1.58,
1147
+ "learning_rate": 2.2967018432707213e-05,
1148
+ "loss": 0.0073,
1149
+ "step": 1860
1150
+ },
1151
+ {
1152
+ "epoch": 1.59,
1153
+ "learning_rate": 2.2745409098651744e-05,
1154
+ "loss": 0.0001,
1155
+ "step": 1870
1156
+ },
1157
+ {
1158
+ "epoch": 1.6,
1159
+ "learning_rate": 2.2523978236228442e-05,
1160
+ "loss": 0.0001,
1161
+ "step": 1880
1162
+ },
1163
+ {
1164
+ "epoch": 1.61,
1165
+ "learning_rate": 2.2302743373729205e-05,
1166
+ "loss": 0.0,
1167
+ "step": 1890
1168
+ },
1169
+ {
1170
+ "epoch": 1.61,
1171
+ "learning_rate": 2.2081722023930743e-05,
1172
+ "loss": 0.0136,
1173
+ "step": 1900
1174
+ },
1175
+ {
1176
+ "epoch": 1.62,
1177
+ "learning_rate": 2.1860931682708248e-05,
1178
+ "loss": 0.0051,
1179
+ "step": 1910
1180
+ },
1181
+ {
1182
+ "epoch": 1.63,
1183
+ "learning_rate": 2.164038982765047e-05,
1184
+ "loss": 0.0004,
1185
+ "step": 1920
1186
+ },
1187
+ {
1188
+ "epoch": 1.64,
1189
+ "learning_rate": 2.1420113916676183e-05,
1190
+ "loss": 0.0002,
1191
+ "step": 1930
1192
+ },
1193
+ {
1194
+ "epoch": 1.65,
1195
+ "learning_rate": 2.1200121386652246e-05,
1196
+ "loss": 0.0001,
1197
+ "step": 1940
1198
+ },
1199
+ {
1200
+ "epoch": 1.66,
1201
+ "learning_rate": 2.0980429652013297e-05,
1202
+ "loss": 0.0001,
1203
+ "step": 1950
1204
+ },
1205
+ {
1206
+ "epoch": 1.67,
1207
+ "learning_rate": 2.0761056103383258e-05,
1208
+ "loss": 0.0001,
1209
+ "step": 1960
1210
+ },
1211
+ {
1212
+ "epoch": 1.67,
1213
+ "learning_rate": 2.0542018106198697e-05,
1214
+ "loss": 0.0,
1215
+ "step": 1970
1216
+ },
1217
+ {
1218
+ "epoch": 1.68,
1219
+ "learning_rate": 2.0323332999334198e-05,
1220
+ "loss": 0.005,
1221
+ "step": 1980
1222
+ },
1223
+ {
1224
+ "epoch": 1.69,
1225
+ "learning_rate": 2.010501809372981e-05,
1226
+ "loss": 0.0149,
1227
+ "step": 1990
1228
+ },
1229
+ {
1230
+ "epoch": 1.7,
1231
+ "learning_rate": 1.988709067102076e-05,
1232
+ "loss": 0.0143,
1233
+ "step": 2000
1234
+ },
1235
+ {
1236
+ "epoch": 1.7,
1237
+ "eval_loss": 0.013543435372412205,
1238
+ "eval_runtime": 87.9904,
1239
+ "eval_samples_per_second": 22.537,
1240
+ "eval_steps_per_second": 2.818,
1241
+ "step": 2000
1242
+ }
1243
+ ],
1244
+ "logging_steps": 10,
1245
+ "max_steps": 3531,
1246
+ "num_train_epochs": 3,
1247
+ "save_steps": 1000,
1248
+ "total_flos": 3.0084561090831974e+17,
1249
+ "trial_name": null,
1250
+ "trial_params": null
1251
+ }
LLM-Detector-V1-4w/checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
3
+ size 4664
LLM-Detector-V1-4w/checkpoint-3000/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../Baichuan2-7B-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: float16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
LLM-Detector-V1-4w/checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32.0,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "W_pack"
20
+ ],
21
+ "task_type": "CAUSAL_LM"
22
+ }
LLM-Detector-V1-4w/checkpoint-3000/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95683a3f84e8898c5638dc27af4722d83e15011e94d2d5b3dc5e5df5fb5f2957
3
+ size 16800430
LLM-Detector-V1-4w/checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382ed77666dc683727826a32b567726fa61aa8ce9683d06554f029848bbbbbe2
3
+ size 33608634
LLM-Detector-V1-4w/checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940027b051c66fe81320f03ac39a79253b4b99e23f81f20a7b419a3e9c536ca7
3
+ size 14244
LLM-Detector-V1-4w/checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d39fa5eb0d60aa11f89119712f921058fcd340118e8e922310dd30bb99e28ee
3
+ size 1064
LLM-Detector-V1-4w/checkpoint-3000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
LLM-Detector-V1-4w/checkpoint-3000/tokenization_baichuan.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ add_bos_token=add_bos_token,
81
+ add_eos_token=add_eos_token,
82
+ sp_model_kwargs=self.sp_model_kwargs,
83
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
+ **kwargs,
85
+ )
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.Load(vocab_file)
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ self.sp_model.Load(self.vocab_file)
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ def get_vocab(self):
108
+ """Returns vocab as a dict"""
109
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
110
+ vocab.update(self.added_tokens_encoder)
111
+ return vocab
112
+
113
+ def _tokenize(self, text):
114
+ """Returns a tokenized string."""
115
+ return self.sp_model.encode(text, out_type=str)
116
+
117
+ def _convert_token_to_id(self, token):
118
+ """Converts a token (str) in an id using the vocab."""
119
+ return self.sp_model.piece_to_id(token)
120
+
121
+ def _convert_id_to_token(self, index):
122
+ """Converts an index (integer) in a token (str) using the vocab."""
123
+ token = self.sp_model.IdToPiece(index)
124
+ return token
125
+
126
+ def convert_tokens_to_string(self, tokens):
127
+ """Converts a sequence of tokens (string) in a single string."""
128
+ current_sub_tokens = []
129
+ out_string = ""
130
+ prev_is_special = False
131
+ for i, token in enumerate(tokens):
132
+ # make sure that special tokens are not decoded using sentencepiece model
133
+ if token in self.all_special_tokens:
134
+ if not prev_is_special and i != 0:
135
+ out_string += " "
136
+ out_string += self.sp_model.decode(current_sub_tokens) + token
137
+ prev_is_special = True
138
+ current_sub_tokens = []
139
+ else:
140
+ current_sub_tokens.append(token)
141
+ prev_is_special = False
142
+ out_string += self.sp_model.decode(current_sub_tokens)
143
+ return out_string
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, "wb") as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
174
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
175
+
176
+ output = bos_token_id + token_ids_0 + eos_token_id
177
+
178
+ if token_ids_1 is not None:
179
+ output = output + bos_token_id + token_ids_1 + eos_token_id
180
+
181
+ return output
182
+
183
+ def get_special_tokens_mask(
184
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
185
+ ) -> List[int]:
186
+ """
187
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
188
+ special tokens using the tokenizer `prepare_for_model` method.
189
+
190
+ Args:
191
+ token_ids_0 (`List[int]`):
192
+ List of IDs.
193
+ token_ids_1 (`List[int]`, *optional*):
194
+ Optional second list of IDs for sequence pairs.
195
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
196
+ Whether or not the token list is already formatted with special tokens for the model.
197
+
198
+ Returns:
199
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
200
+ """
201
+ if already_has_special_tokens:
202
+ return super().get_special_tokens_mask(
203
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
204
+ )
205
+
206
+ bos_token_id = [1] if self.add_bos_token else []
207
+ eos_token_id = [1] if self.add_eos_token else []
208
+
209
+ if token_ids_1 is None:
210
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
211
+ return (
212
+ bos_token_id
213
+ + ([0] * len(token_ids_0))
214
+ + eos_token_id
215
+ + bos_token_id
216
+ + ([0] * len(token_ids_1))
217
+ + eos_token_id
218
+ )
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
225
+ sequence pair mask has the following format:
226
+
227
+ ```
228
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
229
+ | first sequence | second sequence |
230
+ ```
231
+
232
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
233
+
234
+ Args:
235
+ token_ids_0 (`List[int]`):
236
+ List of ids.
237
+ token_ids_1 (`List[int]`, *optional*):
238
+ Optional second list of IDs for sequence pairs.
239
+
240
+ Returns:
241
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
242
+ """
243
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
244
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
245
+
246
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
247
+
248
+ if token_ids_1 is not None:
249
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
250
+
251
+ return output
LLM-Detector-V1-4w/checkpoint-3000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
LLM-Detector-V1-4w/checkpoint-3000/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "split_special_tokens": false,
39
+ "tokenizer_class": "BaichuanTokenizer",
40
+ "unk_token": {
41
+ "__type": "AddedToken",
42
+ "content": "<unk>",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": true
47
+ },
48
+ "use_fast": false
49
+ }
LLM-Detector-V1-4w/checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,1867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.548853016142736,
5
+ "eval_steps": 500,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999919851200522e-05,
14
+ "loss": 9.9461,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9996428002198536e-05,
20
+ "loss": 6.4908,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 4.9992242747551964e-05,
26
+ "loss": 3.708,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4.99857130295276e-05,
32
+ "loss": 0.8908,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 4.997720546222574e-05,
38
+ "loss": 0.2454,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 4.996672071909866e-05,
44
+ "loss": 0.1348,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 4.995425963011034e-05,
50
+ "loss": 0.0487,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 4.993982318167074e-05,
56
+ "loss": 0.0282,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 4.992341251655768e-05,
62
+ "loss": 0.0455,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 4.9905028933826435e-05,
68
+ "loss": 0.0472,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 4.988467388870688e-05,
74
+ "loss": 0.0526,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 4.986234899248826e-05,
80
+ "loss": 0.0679,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 4.983805601239172e-05,
86
+ "loss": 0.0314,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 4.981179687143034e-05,
92
+ "loss": 0.0136,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 4.978357364825695e-05,
98
+ "loss": 0.0409,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 4.975338857699956e-05,
104
+ "loss": 0.0284,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.14,
109
+ "learning_rate": 4.972124404708454e-05,
110
+ "loss": 0.0364,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.15,
115
+ "learning_rate": 4.968714260304743e-05,
116
+ "loss": 0.0147,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 4.965108694433159e-05,
122
+ "loss": 0.0174,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 4.961307992507443e-05,
128
+ "loss": 0.0244,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 4.957312455388152e-05,
134
+ "loss": 0.0387,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 4.953122399358845e-05,
140
+ "loss": 0.0264,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 4.948738156101042e-05,
146
+ "loss": 0.0291,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.2,
151
+ "learning_rate": 4.9441600726679694e-05,
152
+ "loss": 0.0214,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.21,
157
+ "learning_rate": 4.939388511457092e-05,
158
+ "loss": 0.0116,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.22,
163
+ "learning_rate": 4.934423850181419e-05,
164
+ "loss": 0.0191,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 4.9292664818396117e-05,
170
+ "loss": 0.0064,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 4.9239168146848666e-05,
176
+ "loss": 0.0184,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 4.9183752721926036e-05,
182
+ "loss": 0.0026,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.25,
187
+ "learning_rate": 4.912642293026942e-05,
188
+ "loss": 0.0223,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.26,
193
+ "learning_rate": 4.906718331005979e-05,
194
+ "loss": 0.0405,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.27,
199
+ "learning_rate": 4.900603855065861e-05,
200
+ "loss": 0.0461,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.28,
205
+ "learning_rate": 4.894299349223665e-05,
206
+ "loss": 0.0199,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 4.8878053125390875e-05,
212
+ "loss": 0.0193,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 4.881122259074935e-05,
218
+ "loss": 0.004,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 4.874250717856433e-05,
224
+ "loss": 0.0018,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.31,
229
+ "learning_rate": 4.867191232829348e-05,
230
+ "loss": 0.0021,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.32,
235
+ "learning_rate": 4.8599443628169295e-05,
236
+ "loss": 0.018,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.33,
241
+ "learning_rate": 4.8525106814756754e-05,
242
+ "loss": 0.0261,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.34,
247
+ "learning_rate": 4.84489077724992e-05,
248
+ "loss": 0.016,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 4.8370852533252536e-05,
254
+ "loss": 0.0402,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 4.8290947275807755e-05,
260
+ "loss": 0.0038,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 4.8209198325401815e-05,
266
+ "loss": 0.008,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.37,
271
+ "learning_rate": 4.8125612153216976e-05,
272
+ "loss": 0.0296,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.38,
277
+ "learning_rate": 4.804019537586849e-05,
278
+ "loss": 0.0012,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.39,
283
+ "learning_rate": 4.7952954754880886e-05,
284
+ "loss": 0.0142,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.4,
289
+ "learning_rate": 4.7863897196152704e-05,
290
+ "loss": 0.0163,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.41,
295
+ "learning_rate": 4.7773029749409836e-05,
296
+ "loss": 0.0021,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 4.76803596076475e-05,
302
+ "loss": 0.0355,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.42,
307
+ "learning_rate": 4.758589410656078e-05,
308
+ "loss": 0.0199,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.42,
313
+ "eval_loss": 0.010466881096363068,
314
+ "eval_runtime": 88.037,
315
+ "eval_samples_per_second": 22.525,
316
+ "eval_steps_per_second": 2.817,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "learning_rate": 4.748964072396403e-05,
322
+ "loss": 0.0341,
323
+ "step": 510
324
+ },
325
+ {
326
+ "epoch": 0.44,
327
+ "learning_rate": 4.7391607079198876e-05,
328
+ "loss": 0.0137,
329
+ "step": 520
330
+ },
331
+ {
332
+ "epoch": 0.45,
333
+ "learning_rate": 4.7291800932531064e-05,
334
+ "loss": 0.0138,
335
+ "step": 530
336
+ },
337
+ {
338
+ "epoch": 0.46,
339
+ "learning_rate": 4.719023018453623e-05,
340
+ "loss": 0.0063,
341
+ "step": 540
342
+ },
343
+ {
344
+ "epoch": 0.47,
345
+ "learning_rate": 4.708690287547441e-05,
346
+ "loss": 0.0376,
347
+ "step": 550
348
+ },
349
+ {
350
+ "epoch": 0.48,
351
+ "learning_rate": 4.698182718465368e-05,
352
+ "loss": 0.006,
353
+ "step": 560
354
+ },
355
+ {
356
+ "epoch": 0.48,
357
+ "learning_rate": 4.687501142978258e-05,
358
+ "loss": 0.0371,
359
+ "step": 570
360
+ },
361
+ {
362
+ "epoch": 0.49,
363
+ "learning_rate": 4.6766464066311765e-05,
364
+ "loss": 0.0322,
365
+ "step": 580
366
+ },
367
+ {
368
+ "epoch": 0.5,
369
+ "learning_rate": 4.665619368676466e-05,
370
+ "loss": 0.0086,
371
+ "step": 590
372
+ },
373
+ {
374
+ "epoch": 0.51,
375
+ "learning_rate": 4.6544209020057285e-05,
376
+ "loss": 0.002,
377
+ "step": 600
378
+ },
379
+ {
380
+ "epoch": 0.52,
381
+ "learning_rate": 4.643051893080725e-05,
382
+ "loss": 0.0147,
383
+ "step": 610
384
+ },
385
+ {
386
+ "epoch": 0.53,
387
+ "learning_rate": 4.631513241863209e-05,
388
+ "loss": 0.0038,
389
+ "step": 620
390
+ },
391
+ {
392
+ "epoch": 0.54,
393
+ "learning_rate": 4.619805861743683e-05,
394
+ "loss": 0.0187,
395
+ "step": 630
396
+ },
397
+ {
398
+ "epoch": 0.54,
399
+ "learning_rate": 4.607930679469096e-05,
400
+ "loss": 0.0063,
401
+ "step": 640
402
+ },
403
+ {
404
+ "epoch": 0.55,
405
+ "learning_rate": 4.595888635069481e-05,
406
+ "loss": 0.0109,
407
+ "step": 650
408
+ },
409
+ {
410
+ "epoch": 0.56,
411
+ "learning_rate": 4.5836806817835475e-05,
412
+ "loss": 0.005,
413
+ "step": 660
414
+ },
415
+ {
416
+ "epoch": 0.57,
417
+ "learning_rate": 4.57130778598322e-05,
418
+ "loss": 0.0167,
419
+ "step": 670
420
+ },
421
+ {
422
+ "epoch": 0.58,
423
+ "learning_rate": 4.5587709270971425e-05,
424
+ "loss": 0.0143,
425
+ "step": 680
426
+ },
427
+ {
428
+ "epoch": 0.59,
429
+ "learning_rate": 4.546071097533145e-05,
430
+ "loss": 0.0015,
431
+ "step": 690
432
+ },
433
+ {
434
+ "epoch": 0.59,
435
+ "learning_rate": 4.533209302599691e-05,
436
+ "loss": 0.0003,
437
+ "step": 700
438
+ },
439
+ {
440
+ "epoch": 0.6,
441
+ "learning_rate": 4.520186560426292e-05,
442
+ "loss": 0.006,
443
+ "step": 710
444
+ },
445
+ {
446
+ "epoch": 0.61,
447
+ "learning_rate": 4.507003901882915e-05,
448
+ "loss": 0.0093,
449
+ "step": 720
450
+ },
451
+ {
452
+ "epoch": 0.62,
453
+ "learning_rate": 4.493662370498383e-05,
454
+ "loss": 0.0046,
455
+ "step": 730
456
+ },
457
+ {
458
+ "epoch": 0.63,
459
+ "learning_rate": 4.4801630223777665e-05,
460
+ "loss": 0.0147,
461
+ "step": 740
462
+ },
463
+ {
464
+ "epoch": 0.64,
465
+ "learning_rate": 4.466506926118782e-05,
466
+ "loss": 0.0102,
467
+ "step": 750
468
+ },
469
+ {
470
+ "epoch": 0.65,
471
+ "learning_rate": 4.4526951627272074e-05,
472
+ "loss": 0.017,
473
+ "step": 760
474
+ },
475
+ {
476
+ "epoch": 0.65,
477
+ "learning_rate": 4.438728825531305e-05,
478
+ "loss": 0.0033,
479
+ "step": 770
480
+ },
481
+ {
482
+ "epoch": 0.66,
483
+ "learning_rate": 4.4246090200952816e-05,
484
+ "loss": 0.0061,
485
+ "step": 780
486
+ },
487
+ {
488
+ "epoch": 0.67,
489
+ "learning_rate": 4.410336864131762e-05,
490
+ "loss": 0.0032,
491
+ "step": 790
492
+ },
493
+ {
494
+ "epoch": 0.68,
495
+ "learning_rate": 4.395913487413324e-05,
496
+ "loss": 0.0043,
497
+ "step": 800
498
+ },
499
+ {
500
+ "epoch": 0.69,
501
+ "learning_rate": 4.3813400316830576e-05,
502
+ "loss": 0.0063,
503
+ "step": 810
504
+ },
505
+ {
506
+ "epoch": 0.7,
507
+ "learning_rate": 4.36661765056419e-05,
508
+ "loss": 0.0273,
509
+ "step": 820
510
+ },
511
+ {
512
+ "epoch": 0.71,
513
+ "learning_rate": 4.351747509468763e-05,
514
+ "loss": 0.0125,
515
+ "step": 830
516
+ },
517
+ {
518
+ "epoch": 0.71,
519
+ "learning_rate": 4.336730785505382e-05,
520
+ "loss": 0.0076,
521
+ "step": 840
522
+ },
523
+ {
524
+ "epoch": 0.72,
525
+ "learning_rate": 4.3215686673860384e-05,
526
+ "loss": 0.0127,
527
+ "step": 850
528
+ },
529
+ {
530
+ "epoch": 0.73,
531
+ "learning_rate": 4.306262355332006e-05,
532
+ "loss": 0.0161,
533
+ "step": 860
534
+ },
535
+ {
536
+ "epoch": 0.74,
537
+ "learning_rate": 4.290813060978839e-05,
538
+ "loss": 0.0169,
539
+ "step": 870
540
+ },
541
+ {
542
+ "epoch": 0.75,
543
+ "learning_rate": 4.2752220072804564e-05,
544
+ "loss": 0.0081,
545
+ "step": 880
546
+ },
547
+ {
548
+ "epoch": 0.76,
549
+ "learning_rate": 4.259490428412335e-05,
550
+ "loss": 0.0131,
551
+ "step": 890
552
+ },
553
+ {
554
+ "epoch": 0.76,
555
+ "learning_rate": 4.243619569673814e-05,
556
+ "loss": 0.0205,
557
+ "step": 900
558
+ },
559
+ {
560
+ "epoch": 0.77,
561
+ "learning_rate": 4.2276106873895143e-05,
562
+ "loss": 0.0026,
563
+ "step": 910
564
+ },
565
+ {
566
+ "epoch": 0.78,
567
+ "learning_rate": 4.2114650488098936e-05,
568
+ "loss": 0.018,
569
+ "step": 920
570
+ },
571
+ {
572
+ "epoch": 0.79,
573
+ "learning_rate": 4.19518393201093e-05,
574
+ "loss": 0.0083,
575
+ "step": 930
576
+ },
577
+ {
578
+ "epoch": 0.8,
579
+ "learning_rate": 4.178768625792949e-05,
580
+ "loss": 0.0291,
581
+ "step": 940
582
+ },
583
+ {
584
+ "epoch": 0.81,
585
+ "learning_rate": 4.162220429578605e-05,
586
+ "loss": 0.0226,
587
+ "step": 950
588
+ },
589
+ {
590
+ "epoch": 0.82,
591
+ "learning_rate": 4.145540653310018e-05,
592
+ "loss": 0.0042,
593
+ "step": 960
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 4.128730617345084e-05,
598
+ "loss": 0.0078,
599
+ "step": 970
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 4.111791652352952e-05,
604
+ "loss": 0.0084,
605
+ "step": 980
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 4.094725099208688e-05,
610
+ "loss": 0.0044,
611
+ "step": 990
612
+ },
613
+ {
614
+ "epoch": 0.85,
615
+ "learning_rate": 4.077532308887141e-05,
616
+ "loss": 0.0011,
617
+ "step": 1000
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "eval_loss": 0.01175768580287695,
622
+ "eval_runtime": 88.0904,
623
+ "eval_samples_per_second": 22.511,
624
+ "eval_steps_per_second": 2.815,
625
+ "step": 1000
626
+ },
627
+ {
628
+ "epoch": 0.86,
629
+ "learning_rate": 4.060214642355989e-05,
630
+ "loss": 0.0011,
631
+ "step": 1010
632
+ },
633
+ {
634
+ "epoch": 0.87,
635
+ "learning_rate": 4.042773470468016e-05,
636
+ "loss": 0.021,
637
+ "step": 1020
638
+ },
639
+ {
640
+ "epoch": 0.88,
641
+ "learning_rate": 4.0252101738525916e-05,
642
+ "loss": 0.0424,
643
+ "step": 1030
644
+ },
645
+ {
646
+ "epoch": 0.88,
647
+ "learning_rate": 4.0075261428063806e-05,
648
+ "loss": 0.0194,
649
+ "step": 1040
650
+ },
651
+ {
652
+ "epoch": 0.89,
653
+ "learning_rate": 3.9897227771832924e-05,
654
+ "loss": 0.0025,
655
+ "step": 1050
656
+ },
657
+ {
658
+ "epoch": 0.9,
659
+ "learning_rate": 3.971801486283665e-05,
660
+ "loss": 0.0044,
661
+ "step": 1060
662
+ },
663
+ {
664
+ "epoch": 0.91,
665
+ "learning_rate": 3.953763688742708e-05,
666
+ "loss": 0.0051,
667
+ "step": 1070
668
+ },
669
+ {
670
+ "epoch": 0.92,
671
+ "learning_rate": 3.9356108124182067e-05,
672
+ "loss": 0.0071,
673
+ "step": 1080
674
+ },
675
+ {
676
+ "epoch": 0.93,
677
+ "learning_rate": 3.9173442942774885e-05,
678
+ "loss": 0.0145,
679
+ "step": 1090
680
+ },
681
+ {
682
+ "epoch": 0.93,
683
+ "learning_rate": 3.898965580283681e-05,
684
+ "loss": 0.0371,
685
+ "step": 1100
686
+ },
687
+ {
688
+ "epoch": 0.94,
689
+ "learning_rate": 3.880476125281244e-05,
690
+ "loss": 0.0076,
691
+ "step": 1110
692
+ },
693
+ {
694
+ "epoch": 0.95,
695
+ "learning_rate": 3.861877392880808e-05,
696
+ "loss": 0.0035,
697
+ "step": 1120
698
+ },
699
+ {
700
+ "epoch": 0.96,
701
+ "learning_rate": 3.843170855343317e-05,
702
+ "loss": 0.008,
703
+ "step": 1130
704
+ },
705
+ {
706
+ "epoch": 0.97,
707
+ "learning_rate": 3.8243579934634846e-05,
708
+ "loss": 0.0089,
709
+ "step": 1140
710
+ },
711
+ {
712
+ "epoch": 0.98,
713
+ "learning_rate": 3.805440296452574e-05,
714
+ "loss": 0.0034,
715
+ "step": 1150
716
+ },
717
+ {
718
+ "epoch": 0.99,
719
+ "learning_rate": 3.786419261820514e-05,
720
+ "loss": 0.0019,
721
+ "step": 1160
722
+ },
723
+ {
724
+ "epoch": 0.99,
725
+ "learning_rate": 3.7672963952573614e-05,
726
+ "loss": 0.0164,
727
+ "step": 1170
728
+ },
729
+ {
730
+ "epoch": 1.0,
731
+ "learning_rate": 3.748073210514102e-05,
732
+ "loss": 0.0012,
733
+ "step": 1180
734
+ },
735
+ {
736
+ "epoch": 1.01,
737
+ "learning_rate": 3.728751229282836e-05,
738
+ "loss": 0.0072,
739
+ "step": 1190
740
+ },
741
+ {
742
+ "epoch": 1.02,
743
+ "learning_rate": 3.70933198107631e-05,
744
+ "loss": 0.0041,
745
+ "step": 1200
746
+ },
747
+ {
748
+ "epoch": 1.03,
749
+ "learning_rate": 3.689817003106852e-05,
750
+ "loss": 0.0021,
751
+ "step": 1210
752
+ },
753
+ {
754
+ "epoch": 1.04,
755
+ "learning_rate": 3.670207840164678e-05,
756
+ "loss": 0.0024,
757
+ "step": 1220
758
+ },
759
+ {
760
+ "epoch": 1.05,
761
+ "learning_rate": 3.650506044495615e-05,
762
+ "loss": 0.0026,
763
+ "step": 1230
764
+ },
765
+ {
766
+ "epoch": 1.05,
767
+ "learning_rate": 3.630713175678222e-05,
768
+ "loss": 0.005,
769
+ "step": 1240
770
+ },
771
+ {
772
+ "epoch": 1.06,
773
+ "learning_rate": 3.610830800500335e-05,
774
+ "loss": 0.0069,
775
+ "step": 1250
776
+ },
777
+ {
778
+ "epoch": 1.07,
779
+ "learning_rate": 3.590860492835046e-05,
780
+ "loss": 0.0081,
781
+ "step": 1260
782
+ },
783
+ {
784
+ "epoch": 1.08,
785
+ "learning_rate": 3.5708038335161134e-05,
786
+ "loss": 0.0107,
787
+ "step": 1270
788
+ },
789
+ {
790
+ "epoch": 1.09,
791
+ "learning_rate": 3.550662410212819e-05,
792
+ "loss": 0.0074,
793
+ "step": 1280
794
+ },
795
+ {
796
+ "epoch": 1.1,
797
+ "learning_rate": 3.5304378173043e-05,
798
+ "loss": 0.0048,
799
+ "step": 1290
800
+ },
801
+ {
802
+ "epoch": 1.1,
803
+ "learning_rate": 3.5101316557533294e-05,
804
+ "loss": 0.0006,
805
+ "step": 1300
806
+ },
807
+ {
808
+ "epoch": 1.11,
809
+ "learning_rate": 3.489745532979593e-05,
810
+ "loss": 0.0076,
811
+ "step": 1310
812
+ },
813
+ {
814
+ "epoch": 1.12,
815
+ "learning_rate": 3.469281062732442e-05,
816
+ "loss": 0.0002,
817
+ "step": 1320
818
+ },
819
+ {
820
+ "epoch": 1.13,
821
+ "learning_rate": 3.448739864963154e-05,
822
+ "loss": 0.0073,
823
+ "step": 1330
824
+ },
825
+ {
826
+ "epoch": 1.14,
827
+ "learning_rate": 3.4281235656966915e-05,
828
+ "loss": 0.0008,
829
+ "step": 1340
830
+ },
831
+ {
832
+ "epoch": 1.15,
833
+ "learning_rate": 3.4074337969029965e-05,
834
+ "loss": 0.001,
835
+ "step": 1350
836
+ },
837
+ {
838
+ "epoch": 1.16,
839
+ "learning_rate": 3.386672196367799e-05,
840
+ "loss": 0.0047,
841
+ "step": 1360
842
+ },
843
+ {
844
+ "epoch": 1.16,
845
+ "learning_rate": 3.365840407562974e-05,
846
+ "loss": 0.0131,
847
+ "step": 1370
848
+ },
849
+ {
850
+ "epoch": 1.17,
851
+ "learning_rate": 3.3449400795164416e-05,
852
+ "loss": 0.001,
853
+ "step": 1380
854
+ },
855
+ {
856
+ "epoch": 1.18,
857
+ "learning_rate": 3.323972866681637e-05,
858
+ "loss": 0.0058,
859
+ "step": 1390
860
+ },
861
+ {
862
+ "epoch": 1.19,
863
+ "learning_rate": 3.3029404288065426e-05,
864
+ "loss": 0.0047,
865
+ "step": 1400
866
+ },
867
+ {
868
+ "epoch": 1.2,
869
+ "learning_rate": 3.2818444308023e-05,
870
+ "loss": 0.0029,
871
+ "step": 1410
872
+ },
873
+ {
874
+ "epoch": 1.21,
875
+ "learning_rate": 3.2606865426114234e-05,
876
+ "loss": 0.0073,
877
+ "step": 1420
878
+ },
879
+ {
880
+ "epoch": 1.21,
881
+ "learning_rate": 3.239468439075604e-05,
882
+ "loss": 0.0006,
883
+ "step": 1430
884
+ },
885
+ {
886
+ "epoch": 1.22,
887
+ "learning_rate": 3.2181917998031326e-05,
888
+ "loss": 0.0028,
889
+ "step": 1440
890
+ },
891
+ {
892
+ "epoch": 1.23,
893
+ "learning_rate": 3.196858309035941e-05,
894
+ "loss": 0.0003,
895
+ "step": 1450
896
+ },
897
+ {
898
+ "epoch": 1.24,
899
+ "learning_rate": 3.175469655516284e-05,
900
+ "loss": 0.0007,
901
+ "step": 1460
902
+ },
903
+ {
904
+ "epoch": 1.25,
905
+ "learning_rate": 3.154027532353052e-05,
906
+ "loss": 0.0037,
907
+ "step": 1470
908
+ },
909
+ {
910
+ "epoch": 1.26,
911
+ "learning_rate": 3.132533636887753e-05,
912
+ "loss": 0.0065,
913
+ "step": 1480
914
+ },
915
+ {
916
+ "epoch": 1.27,
917
+ "learning_rate": 3.1109896705601485e-05,
918
+ "loss": 0.0092,
919
+ "step": 1490
920
+ },
921
+ {
922
+ "epoch": 1.27,
923
+ "learning_rate": 3.0893973387735687e-05,
924
+ "loss": 0.0001,
925
+ "step": 1500
926
+ },
927
+ {
928
+ "epoch": 1.27,
929
+ "eval_loss": 0.010954583063721657,
930
+ "eval_runtime": 88.0029,
931
+ "eval_samples_per_second": 22.533,
932
+ "eval_steps_per_second": 2.818,
933
+ "step": 1500
934
+ },
935
+ {
936
+ "epoch": 1.28,
937
+ "learning_rate": 3.067758350759917e-05,
938
+ "loss": 0.0002,
939
+ "step": 1510
940
+ },
941
+ {
942
+ "epoch": 1.29,
943
+ "learning_rate": 3.046074419444366e-05,
944
+ "loss": 0.0004,
945
+ "step": 1520
946
+ },
947
+ {
948
+ "epoch": 1.3,
949
+ "learning_rate": 3.0243472613097656e-05,
950
+ "loss": 0.001,
951
+ "step": 1530
952
+ },
953
+ {
954
+ "epoch": 1.31,
955
+ "learning_rate": 3.002578596260765e-05,
956
+ "loss": 0.0001,
957
+ "step": 1540
958
+ },
959
+ {
960
+ "epoch": 1.32,
961
+ "learning_rate": 2.980770147487668e-05,
962
+ "loss": 0.0086,
963
+ "step": 1550
964
+ },
965
+ {
966
+ "epoch": 1.33,
967
+ "learning_rate": 2.958923641330028e-05,
968
+ "loss": 0.0021,
969
+ "step": 1560
970
+ },
971
+ {
972
+ "epoch": 1.33,
973
+ "learning_rate": 2.9370408071399898e-05,
974
+ "loss": 0.0001,
975
+ "step": 1570
976
+ },
977
+ {
978
+ "epoch": 1.34,
979
+ "learning_rate": 2.9151233771453956e-05,
980
+ "loss": 0.0076,
981
+ "step": 1580
982
+ },
983
+ {
984
+ "epoch": 1.35,
985
+ "learning_rate": 2.8931730863126666e-05,
986
+ "loss": 0.0001,
987
+ "step": 1590
988
+ },
989
+ {
990
+ "epoch": 1.36,
991
+ "learning_rate": 2.871191672209459e-05,
992
+ "loss": 0.0001,
993
+ "step": 1600
994
+ },
995
+ {
996
+ "epoch": 1.37,
997
+ "learning_rate": 2.8491808748671255e-05,
998
+ "loss": 0.0001,
999
+ "step": 1610
1000
+ },
1001
+ {
1002
+ "epoch": 1.38,
1003
+ "learning_rate": 2.8271424366429706e-05,
1004
+ "loss": 0.0115,
1005
+ "step": 1620
1006
+ },
1007
+ {
1008
+ "epoch": 1.38,
1009
+ "learning_rate": 2.8050781020823296e-05,
1010
+ "loss": 0.0001,
1011
+ "step": 1630
1012
+ },
1013
+ {
1014
+ "epoch": 1.39,
1015
+ "learning_rate": 2.7829896177804716e-05,
1016
+ "loss": 0.0003,
1017
+ "step": 1640
1018
+ },
1019
+ {
1020
+ "epoch": 1.4,
1021
+ "learning_rate": 2.760878732244339e-05,
1022
+ "loss": 0.0003,
1023
+ "step": 1650
1024
+ },
1025
+ {
1026
+ "epoch": 1.41,
1027
+ "learning_rate": 2.7387471957541405e-05,
1028
+ "loss": 0.0024,
1029
+ "step": 1660
1030
+ },
1031
+ {
1032
+ "epoch": 1.42,
1033
+ "learning_rate": 2.7165967602247964e-05,
1034
+ "loss": 0.0005,
1035
+ "step": 1670
1036
+ },
1037
+ {
1038
+ "epoch": 1.43,
1039
+ "learning_rate": 2.694429179067261e-05,
1040
+ "loss": 0.0018,
1041
+ "step": 1680
1042
+ },
1043
+ {
1044
+ "epoch": 1.44,
1045
+ "learning_rate": 2.6744651468034758e-05,
1046
+ "loss": 0.002,
1047
+ "step": 1690
1048
+ },
1049
+ {
1050
+ "epoch": 1.44,
1051
+ "learning_rate": 2.6522698243485527e-05,
1052
+ "loss": 0.0001,
1053
+ "step": 1700
1054
+ },
1055
+ {
1056
+ "epoch": 1.45,
1057
+ "learning_rate": 2.6300624483347926e-05,
1058
+ "loss": 0.0058,
1059
+ "step": 1710
1060
+ },
1061
+ {
1062
+ "epoch": 1.46,
1063
+ "learning_rate": 2.607844776680513e-05,
1064
+ "loss": 0.0001,
1065
+ "step": 1720
1066
+ },
1067
+ {
1068
+ "epoch": 1.47,
1069
+ "learning_rate": 2.585618568119027e-05,
1070
+ "loss": 0.0001,
1071
+ "step": 1730
1072
+ },
1073
+ {
1074
+ "epoch": 1.48,
1075
+ "learning_rate": 2.56338558205942e-05,
1076
+ "loss": 0.0008,
1077
+ "step": 1740
1078
+ },
1079
+ {
1080
+ "epoch": 1.49,
1081
+ "learning_rate": 2.5411475784472805e-05,
1082
+ "loss": 0.0002,
1083
+ "step": 1750
1084
+ },
1085
+ {
1086
+ "epoch": 1.5,
1087
+ "learning_rate": 2.5189063176253825e-05,
1088
+ "loss": 0.0001,
1089
+ "step": 1760
1090
+ },
1091
+ {
1092
+ "epoch": 1.5,
1093
+ "learning_rate": 2.496663560194338e-05,
1094
+ "loss": 0.0001,
1095
+ "step": 1770
1096
+ },
1097
+ {
1098
+ "epoch": 1.51,
1099
+ "learning_rate": 2.4744210668732295e-05,
1100
+ "loss": 0.0001,
1101
+ "step": 1780
1102
+ },
1103
+ {
1104
+ "epoch": 1.52,
1105
+ "learning_rate": 2.452180598360232e-05,
1106
+ "loss": 0.0001,
1107
+ "step": 1790
1108
+ },
1109
+ {
1110
+ "epoch": 1.53,
1111
+ "learning_rate": 2.429943915193239e-05,
1112
+ "loss": 0.0,
1113
+ "step": 1800
1114
+ },
1115
+ {
1116
+ "epoch": 1.54,
1117
+ "learning_rate": 2.4077127776104984e-05,
1118
+ "loss": 0.0146,
1119
+ "step": 1810
1120
+ },
1121
+ {
1122
+ "epoch": 1.55,
1123
+ "learning_rate": 2.3854889454112748e-05,
1124
+ "loss": 0.0017,
1125
+ "step": 1820
1126
+ },
1127
+ {
1128
+ "epoch": 1.55,
1129
+ "learning_rate": 2.3632741778165442e-05,
1130
+ "loss": 0.0001,
1131
+ "step": 1830
1132
+ },
1133
+ {
1134
+ "epoch": 1.56,
1135
+ "learning_rate": 2.3410702333297356e-05,
1136
+ "loss": 0.0001,
1137
+ "step": 1840
1138
+ },
1139
+ {
1140
+ "epoch": 1.57,
1141
+ "learning_rate": 2.318878869597528e-05,
1142
+ "loss": 0.0001,
1143
+ "step": 1850
1144
+ },
1145
+ {
1146
+ "epoch": 1.58,
1147
+ "learning_rate": 2.2967018432707213e-05,
1148
+ "loss": 0.0073,
1149
+ "step": 1860
1150
+ },
1151
+ {
1152
+ "epoch": 1.59,
1153
+ "learning_rate": 2.2745409098651744e-05,
1154
+ "loss": 0.0001,
1155
+ "step": 1870
1156
+ },
1157
+ {
1158
+ "epoch": 1.6,
1159
+ "learning_rate": 2.2523978236228442e-05,
1160
+ "loss": 0.0001,
1161
+ "step": 1880
1162
+ },
1163
+ {
1164
+ "epoch": 1.61,
1165
+ "learning_rate": 2.2302743373729205e-05,
1166
+ "loss": 0.0,
1167
+ "step": 1890
1168
+ },
1169
+ {
1170
+ "epoch": 1.61,
1171
+ "learning_rate": 2.2081722023930743e-05,
1172
+ "loss": 0.0136,
1173
+ "step": 1900
1174
+ },
1175
+ {
1176
+ "epoch": 1.62,
1177
+ "learning_rate": 2.1860931682708248e-05,
1178
+ "loss": 0.0051,
1179
+ "step": 1910
1180
+ },
1181
+ {
1182
+ "epoch": 1.63,
1183
+ "learning_rate": 2.164038982765047e-05,
1184
+ "loss": 0.0004,
1185
+ "step": 1920
1186
+ },
1187
+ {
1188
+ "epoch": 1.64,
1189
+ "learning_rate": 2.1420113916676183e-05,
1190
+ "loss": 0.0002,
1191
+ "step": 1930
1192
+ },
1193
+ {
1194
+ "epoch": 1.65,
1195
+ "learning_rate": 2.1200121386652246e-05,
1196
+ "loss": 0.0001,
1197
+ "step": 1940
1198
+ },
1199
+ {
1200
+ "epoch": 1.66,
1201
+ "learning_rate": 2.0980429652013297e-05,
1202
+ "loss": 0.0001,
1203
+ "step": 1950
1204
+ },
1205
+ {
1206
+ "epoch": 1.67,
1207
+ "learning_rate": 2.0761056103383258e-05,
1208
+ "loss": 0.0001,
1209
+ "step": 1960
1210
+ },
1211
+ {
1212
+ "epoch": 1.67,
1213
+ "learning_rate": 2.0542018106198697e-05,
1214
+ "loss": 0.0,
1215
+ "step": 1970
1216
+ },
1217
+ {
1218
+ "epoch": 1.68,
1219
+ "learning_rate": 2.0323332999334198e-05,
1220
+ "loss": 0.005,
1221
+ "step": 1980
1222
+ },
1223
+ {
1224
+ "epoch": 1.69,
1225
+ "learning_rate": 2.010501809372981e-05,
1226
+ "loss": 0.0149,
1227
+ "step": 1990
1228
+ },
1229
+ {
1230
+ "epoch": 1.7,
1231
+ "learning_rate": 1.988709067102076e-05,
1232
+ "loss": 0.0143,
1233
+ "step": 2000
1234
+ },
1235
+ {
1236
+ "epoch": 1.7,
1237
+ "eval_loss": 0.013543435372412205,
1238
+ "eval_runtime": 87.9904,
1239
+ "eval_samples_per_second": 22.537,
1240
+ "eval_steps_per_second": 2.818,
1241
+ "step": 2000
1242
+ },
1243
+ {
1244
+ "epoch": 1.71,
1245
+ "learning_rate": 1.966956798216943e-05,
1246
+ "loss": 0.0017,
1247
+ "step": 2010
1248
+ },
1249
+ {
1250
+ "epoch": 1.72,
1251
+ "learning_rate": 1.945246724609978e-05,
1252
+ "loss": 0.0038,
1253
+ "step": 2020
1254
+ },
1255
+ {
1256
+ "epoch": 1.72,
1257
+ "learning_rate": 1.9235805648334342e-05,
1258
+ "loss": 0.0003,
1259
+ "step": 2030
1260
+ },
1261
+ {
1262
+ "epoch": 1.73,
1263
+ "learning_rate": 1.9019600339633798e-05,
1264
+ "loss": 0.0005,
1265
+ "step": 2040
1266
+ },
1267
+ {
1268
+ "epoch": 1.74,
1269
+ "learning_rate": 1.8803868434639345e-05,
1270
+ "loss": 0.0005,
1271
+ "step": 2050
1272
+ },
1273
+ {
1274
+ "epoch": 1.75,
1275
+ "learning_rate": 1.858862701051791e-05,
1276
+ "loss": 0.0009,
1277
+ "step": 2060
1278
+ },
1279
+ {
1280
+ "epoch": 1.76,
1281
+ "learning_rate": 1.8373893105610356e-05,
1282
+ "loss": 0.0002,
1283
+ "step": 2070
1284
+ },
1285
+ {
1286
+ "epoch": 1.77,
1287
+ "learning_rate": 1.815968371808273e-05,
1288
+ "loss": 0.0036,
1289
+ "step": 2080
1290
+ },
1291
+ {
1292
+ "epoch": 1.78,
1293
+ "learning_rate": 1.7946015804580688e-05,
1294
+ "loss": 0.0138,
1295
+ "step": 2090
1296
+ },
1297
+ {
1298
+ "epoch": 1.78,
1299
+ "learning_rate": 1.7732906278887225e-05,
1300
+ "loss": 0.0005,
1301
+ "step": 2100
1302
+ },
1303
+ {
1304
+ "epoch": 1.79,
1305
+ "learning_rate": 1.7520372010583815e-05,
1306
+ "loss": 0.0001,
1307
+ "step": 2110
1308
+ },
1309
+ {
1310
+ "epoch": 1.8,
1311
+ "learning_rate": 1.7308429823714995e-05,
1312
+ "loss": 0.0001,
1313
+ "step": 2120
1314
+ },
1315
+ {
1316
+ "epoch": 1.81,
1317
+ "learning_rate": 1.709709649545662e-05,
1318
+ "loss": 0.0001,
1319
+ "step": 2130
1320
+ },
1321
+ {
1322
+ "epoch": 1.82,
1323
+ "learning_rate": 1.688638875478777e-05,
1324
+ "loss": 0.0001,
1325
+ "step": 2140
1326
+ },
1327
+ {
1328
+ "epoch": 1.83,
1329
+ "learning_rate": 1.66763232811665e-05,
1330
+ "loss": 0.0,
1331
+ "step": 2150
1332
+ },
1333
+ {
1334
+ "epoch": 1.84,
1335
+ "learning_rate": 1.6466916703209535e-05,
1336
+ "loss": 0.012,
1337
+ "step": 2160
1338
+ },
1339
+ {
1340
+ "epoch": 1.84,
1341
+ "learning_rate": 1.625818559737592e-05,
1342
+ "loss": 0.0,
1343
+ "step": 2170
1344
+ },
1345
+ {
1346
+ "epoch": 1.85,
1347
+ "learning_rate": 1.605014648665486e-05,
1348
+ "loss": 0.0005,
1349
+ "step": 2180
1350
+ },
1351
+ {
1352
+ "epoch": 1.86,
1353
+ "learning_rate": 1.584281583925779e-05,
1354
+ "loss": 0.0047,
1355
+ "step": 2190
1356
+ },
1357
+ {
1358
+ "epoch": 1.87,
1359
+ "learning_rate": 1.5636210067314744e-05,
1360
+ "loss": 0.0126,
1361
+ "step": 2200
1362
+ },
1363
+ {
1364
+ "epoch": 1.88,
1365
+ "learning_rate": 1.5430345525575186e-05,
1366
+ "loss": 0.0015,
1367
+ "step": 2210
1368
+ },
1369
+ {
1370
+ "epoch": 1.89,
1371
+ "learning_rate": 1.5225238510113377e-05,
1372
+ "loss": 0.0018,
1373
+ "step": 2220
1374
+ },
1375
+ {
1376
+ "epoch": 1.89,
1377
+ "learning_rate": 1.5020905257038403e-05,
1378
+ "loss": 0.0057,
1379
+ "step": 2230
1380
+ },
1381
+ {
1382
+ "epoch": 1.9,
1383
+ "learning_rate": 1.481736194120894e-05,
1384
+ "loss": 0.0036,
1385
+ "step": 2240
1386
+ },
1387
+ {
1388
+ "epoch": 1.91,
1389
+ "learning_rate": 1.4614624674952842e-05,
1390
+ "loss": 0.0006,
1391
+ "step": 2250
1392
+ },
1393
+ {
1394
+ "epoch": 1.92,
1395
+ "learning_rate": 1.4412709506791725e-05,
1396
+ "loss": 0.0054,
1397
+ "step": 2260
1398
+ },
1399
+ {
1400
+ "epoch": 1.93,
1401
+ "learning_rate": 1.4211632420170558e-05,
1402
+ "loss": 0.0039,
1403
+ "step": 2270
1404
+ },
1405
+ {
1406
+ "epoch": 1.94,
1407
+ "learning_rate": 1.4011409332192472e-05,
1408
+ "loss": 0.0017,
1409
+ "step": 2280
1410
+ },
1411
+ {
1412
+ "epoch": 1.95,
1413
+ "learning_rate": 1.3812056092358686e-05,
1414
+ "loss": 0.0181,
1415
+ "step": 2290
1416
+ },
1417
+ {
1418
+ "epoch": 1.95,
1419
+ "learning_rate": 1.3613588481313977e-05,
1420
+ "loss": 0.0035,
1421
+ "step": 2300
1422
+ },
1423
+ {
1424
+ "epoch": 1.96,
1425
+ "learning_rate": 1.3416022209597429e-05,
1426
+ "loss": 0.0001,
1427
+ "step": 2310
1428
+ },
1429
+ {
1430
+ "epoch": 1.97,
1431
+ "learning_rate": 1.3219372916398826e-05,
1432
+ "loss": 0.0005,
1433
+ "step": 2320
1434
+ },
1435
+ {
1436
+ "epoch": 1.98,
1437
+ "learning_rate": 1.302365616832063e-05,
1438
+ "loss": 0.0012,
1439
+ "step": 2330
1440
+ },
1441
+ {
1442
+ "epoch": 1.99,
1443
+ "learning_rate": 1.2828887458145806e-05,
1444
+ "loss": 0.0052,
1445
+ "step": 2340
1446
+ },
1447
+ {
1448
+ "epoch": 2.0,
1449
+ "learning_rate": 1.2635082203611375e-05,
1450
+ "loss": 0.0008,
1451
+ "step": 2350
1452
+ },
1453
+ {
1454
+ "epoch": 2.01,
1455
+ "learning_rate": 1.2442255746187954e-05,
1456
+ "loss": 0.0002,
1457
+ "step": 2360
1458
+ },
1459
+ {
1460
+ "epoch": 2.01,
1461
+ "learning_rate": 1.2250423349865387e-05,
1462
+ "loss": 0.0009,
1463
+ "step": 2370
1464
+ },
1465
+ {
1466
+ "epoch": 2.02,
1467
+ "learning_rate": 1.2059600199944388e-05,
1468
+ "loss": 0.0002,
1469
+ "step": 2380
1470
+ },
1471
+ {
1472
+ "epoch": 2.03,
1473
+ "learning_rate": 1.1869801401834564e-05,
1474
+ "loss": 0.0001,
1475
+ "step": 2390
1476
+ },
1477
+ {
1478
+ "epoch": 2.04,
1479
+ "learning_rate": 1.1681041979858626e-05,
1480
+ "loss": 0.0001,
1481
+ "step": 2400
1482
+ },
1483
+ {
1484
+ "epoch": 2.05,
1485
+ "learning_rate": 1.1493336876063071e-05,
1486
+ "loss": 0.0001,
1487
+ "step": 2410
1488
+ },
1489
+ {
1490
+ "epoch": 2.06,
1491
+ "learning_rate": 1.1306700949035462e-05,
1492
+ "loss": 0.0,
1493
+ "step": 2420
1494
+ },
1495
+ {
1496
+ "epoch": 2.06,
1497
+ "learning_rate": 1.1121148972728104e-05,
1498
+ "loss": 0.0001,
1499
+ "step": 2430
1500
+ },
1501
+ {
1502
+ "epoch": 2.07,
1503
+ "learning_rate": 1.0936695635288674e-05,
1504
+ "loss": 0.0001,
1505
+ "step": 2440
1506
+ },
1507
+ {
1508
+ "epoch": 2.08,
1509
+ "learning_rate": 1.0753355537897427e-05,
1510
+ "loss": 0.0001,
1511
+ "step": 2450
1512
+ },
1513
+ {
1514
+ "epoch": 2.09,
1515
+ "learning_rate": 1.0571143193611444e-05,
1516
+ "loss": 0.0,
1517
+ "step": 2460
1518
+ },
1519
+ {
1520
+ "epoch": 2.1,
1521
+ "learning_rate": 1.039007302621576e-05,
1522
+ "loss": 0.0001,
1523
+ "step": 2470
1524
+ },
1525
+ {
1526
+ "epoch": 2.11,
1527
+ "learning_rate": 1.0210159369081568e-05,
1528
+ "loss": 0.0003,
1529
+ "step": 2480
1530
+ },
1531
+ {
1532
+ "epoch": 2.12,
1533
+ "learning_rate": 1.0031416464031654e-05,
1534
+ "loss": 0.0,
1535
+ "step": 2490
1536
+ },
1537
+ {
1538
+ "epoch": 2.12,
1539
+ "learning_rate": 9.853858460212962e-06,
1540
+ "loss": 0.0001,
1541
+ "step": 2500
1542
+ },
1543
+ {
1544
+ "epoch": 2.12,
1545
+ "eval_loss": 0.012909023091197014,
1546
+ "eval_runtime": 87.9835,
1547
+ "eval_samples_per_second": 22.538,
1548
+ "eval_steps_per_second": 2.819,
1549
+ "step": 2500
1550
+ },
1551
+ {
1552
+ "epoch": 2.13,
1553
+ "learning_rate": 9.677499412976632e-06,
1554
+ "loss": 0.0,
1555
+ "step": 2510
1556
+ },
1557
+ {
1558
+ "epoch": 2.14,
1559
+ "learning_rate": 9.502353282765306e-06,
1560
+ "loss": 0.0001,
1561
+ "step": 2520
1562
+ },
1563
+ {
1564
+ "epoch": 2.15,
1565
+ "learning_rate": 9.328433934008107e-06,
1566
+ "loss": 0.0002,
1567
+ "step": 2530
1568
+ },
1569
+ {
1570
+ "epoch": 2.16,
1571
+ "learning_rate": 9.155755134023097e-06,
1572
+ "loss": 0.0,
1573
+ "step": 2540
1574
+ },
1575
+ {
1576
+ "epoch": 2.17,
1577
+ "learning_rate": 8.984330551927475e-06,
1578
+ "loss": 0.0,
1579
+ "step": 2550
1580
+ },
1581
+ {
1582
+ "epoch": 2.18,
1583
+ "learning_rate": 8.81417375755556e-06,
1584
+ "loss": 0.0002,
1585
+ "step": 2560
1586
+ },
1587
+ {
1588
+ "epoch": 2.18,
1589
+ "learning_rate": 8.645298220384567e-06,
1590
+ "loss": 0.0001,
1591
+ "step": 2570
1592
+ },
1593
+ {
1594
+ "epoch": 2.19,
1595
+ "learning_rate": 8.477717308468442e-06,
1596
+ "loss": 0.0008,
1597
+ "step": 2580
1598
+ },
1599
+ {
1600
+ "epoch": 2.2,
1601
+ "learning_rate": 8.31144428737958e-06,
1602
+ "loss": 0.0,
1603
+ "step": 2590
1604
+ },
1605
+ {
1606
+ "epoch": 2.21,
1607
+ "learning_rate": 8.146492319158805e-06,
1608
+ "loss": 0.0,
1609
+ "step": 2600
1610
+ },
1611
+ {
1612
+ "epoch": 2.22,
1613
+ "learning_rate": 7.982874461273438e-06,
1614
+ "loss": 0.0001,
1615
+ "step": 2610
1616
+ },
1617
+ {
1618
+ "epoch": 2.23,
1619
+ "learning_rate": 7.820603665583654e-06,
1620
+ "loss": 0.0002,
1621
+ "step": 2620
1622
+ },
1623
+ {
1624
+ "epoch": 2.23,
1625
+ "learning_rate": 7.659692777317288e-06,
1626
+ "loss": 0.0001,
1627
+ "step": 2630
1628
+ },
1629
+ {
1630
+ "epoch": 2.24,
1631
+ "learning_rate": 7.500154534052933e-06,
1632
+ "loss": 0.0001,
1633
+ "step": 2640
1634
+ },
1635
+ {
1636
+ "epoch": 2.25,
1637
+ "learning_rate": 7.342001564711756e-06,
1638
+ "loss": 0.0001,
1639
+ "step": 2650
1640
+ },
1641
+ {
1642
+ "epoch": 2.26,
1643
+ "learning_rate": 7.185246388557665e-06,
1644
+ "loss": 0.0,
1645
+ "step": 2660
1646
+ },
1647
+ {
1648
+ "epoch": 2.27,
1649
+ "learning_rate": 7.0299014142064106e-06,
1650
+ "loss": 0.0,
1651
+ "step": 2670
1652
+ },
1653
+ {
1654
+ "epoch": 2.28,
1655
+ "learning_rate": 6.875978938643277e-06,
1656
+ "loss": 0.0001,
1657
+ "step": 2680
1658
+ },
1659
+ {
1660
+ "epoch": 2.29,
1661
+ "learning_rate": 6.723491146249647e-06,
1662
+ "loss": 0.0,
1663
+ "step": 2690
1664
+ },
1665
+ {
1666
+ "epoch": 2.29,
1667
+ "learning_rate": 6.572450107838551e-06,
1668
+ "loss": 0.0001,
1669
+ "step": 2700
1670
+ },
1671
+ {
1672
+ "epoch": 2.3,
1673
+ "learning_rate": 6.422867779699088e-06,
1674
+ "loss": 0.0002,
1675
+ "step": 2710
1676
+ },
1677
+ {
1678
+ "epoch": 2.31,
1679
+ "learning_rate": 6.274756002650034e-06,
1680
+ "loss": 0.0001,
1681
+ "step": 2720
1682
+ },
1683
+ {
1684
+ "epoch": 2.32,
1685
+ "learning_rate": 6.128126501102479e-06,
1686
+ "loss": 0.0001,
1687
+ "step": 2730
1688
+ },
1689
+ {
1690
+ "epoch": 2.33,
1691
+ "learning_rate": 5.982990882131775e-06,
1692
+ "loss": 0.0001,
1693
+ "step": 2740
1694
+ },
1695
+ {
1696
+ "epoch": 2.34,
1697
+ "learning_rate": 5.83936063455871e-06,
1698
+ "loss": 0.0001,
1699
+ "step": 2750
1700
+ },
1701
+ {
1702
+ "epoch": 2.34,
1703
+ "learning_rate": 5.697247128040037e-06,
1704
+ "loss": 0.0,
1705
+ "step": 2760
1706
+ },
1707
+ {
1708
+ "epoch": 2.35,
1709
+ "learning_rate": 5.556661612168537e-06,
1710
+ "loss": 0.0003,
1711
+ "step": 2770
1712
+ },
1713
+ {
1714
+ "epoch": 2.36,
1715
+ "learning_rate": 5.417615215582408e-06,
1716
+ "loss": 0.0001,
1717
+ "step": 2780
1718
+ },
1719
+ {
1720
+ "epoch": 2.37,
1721
+ "learning_rate": 5.280118945084422e-06,
1722
+ "loss": 0.0001,
1723
+ "step": 2790
1724
+ },
1725
+ {
1726
+ "epoch": 2.38,
1727
+ "learning_rate": 5.144183684770565e-06,
1728
+ "loss": 0.0,
1729
+ "step": 2800
1730
+ },
1731
+ {
1732
+ "epoch": 2.39,
1733
+ "learning_rate": 5.00982019516851e-06,
1734
+ "loss": 0.0,
1735
+ "step": 2810
1736
+ },
1737
+ {
1738
+ "epoch": 2.4,
1739
+ "learning_rate": 4.877039112385815e-06,
1740
+ "loss": 0.0001,
1741
+ "step": 2820
1742
+ },
1743
+ {
1744
+ "epoch": 2.4,
1745
+ "learning_rate": 4.74585094726793e-06,
1746
+ "loss": 0.0003,
1747
+ "step": 2830
1748
+ },
1749
+ {
1750
+ "epoch": 2.41,
1751
+ "learning_rate": 4.616266084566243e-06,
1752
+ "loss": 0.0,
1753
+ "step": 2840
1754
+ },
1755
+ {
1756
+ "epoch": 2.42,
1757
+ "learning_rate": 4.488294782115957e-06,
1758
+ "loss": 0.0001,
1759
+ "step": 2850
1760
+ },
1761
+ {
1762
+ "epoch": 2.43,
1763
+ "learning_rate": 4.361947170024144e-06,
1764
+ "loss": 0.0001,
1765
+ "step": 2860
1766
+ },
1767
+ {
1768
+ "epoch": 2.44,
1769
+ "learning_rate": 4.2372332498678256e-06,
1770
+ "loss": 0.0007,
1771
+ "step": 2870
1772
+ },
1773
+ {
1774
+ "epoch": 2.45,
1775
+ "learning_rate": 4.11416289390226e-06,
1776
+ "loss": 0.0061,
1777
+ "step": 2880
1778
+ },
1779
+ {
1780
+ "epoch": 2.46,
1781
+ "learning_rate": 3.992745844279475e-06,
1782
+ "loss": 0.0,
1783
+ "step": 2890
1784
+ },
1785
+ {
1786
+ "epoch": 2.46,
1787
+ "learning_rate": 3.872991712277052e-06,
1788
+ "loss": 0.0001,
1789
+ "step": 2900
1790
+ },
1791
+ {
1792
+ "epoch": 2.47,
1793
+ "learning_rate": 3.7549099775373576e-06,
1794
+ "loss": 0.0002,
1795
+ "step": 2910
1796
+ },
1797
+ {
1798
+ "epoch": 2.48,
1799
+ "learning_rate": 3.6385099873170875e-06,
1800
+ "loss": 0.0,
1801
+ "step": 2920
1802
+ },
1803
+ {
1804
+ "epoch": 2.49,
1805
+ "learning_rate": 3.5238009557473946e-06,
1806
+ "loss": 0.0,
1807
+ "step": 2930
1808
+ },
1809
+ {
1810
+ "epoch": 2.5,
1811
+ "learning_rate": 3.4107919631044732e-06,
1812
+ "loss": 0.0028,
1813
+ "step": 2940
1814
+ },
1815
+ {
1816
+ "epoch": 2.51,
1817
+ "learning_rate": 3.299491955090775e-06,
1818
+ "loss": 0.0003,
1819
+ "step": 2950
1820
+ },
1821
+ {
1822
+ "epoch": 2.51,
1823
+ "learning_rate": 3.1899097421268924e-06,
1824
+ "loss": 0.0001,
1825
+ "step": 2960
1826
+ },
1827
+ {
1828
+ "epoch": 2.52,
1829
+ "learning_rate": 3.0820539986541054e-06,
1830
+ "loss": 0.0,
1831
+ "step": 2970
1832
+ },
1833
+ {
1834
+ "epoch": 2.53,
1835
+ "learning_rate": 2.97593326244775e-06,
1836
+ "loss": 0.0013,
1837
+ "step": 2980
1838
+ },
1839
+ {
1840
+ "epoch": 2.54,
1841
+ "learning_rate": 2.871555933941353e-06,
1842
+ "loss": 0.0001,
1843
+ "step": 2990
1844
+ },
1845
+ {
1846
+ "epoch": 2.55,
1847
+ "learning_rate": 2.7689302755616736e-06,
1848
+ "loss": 0.0001,
1849
+ "step": 3000
1850
+ },
1851
+ {
1852
+ "epoch": 2.55,
1853
+ "eval_loss": 0.014460938051342964,
1854
+ "eval_runtime": 87.9924,
1855
+ "eval_samples_per_second": 22.536,
1856
+ "eval_steps_per_second": 2.818,
1857
+ "step": 3000
1858
+ }
1859
+ ],
1860
+ "logging_steps": 10,
1861
+ "max_steps": 3531,
1862
+ "num_train_epochs": 3,
1863
+ "save_steps": 1000,
1864
+ "total_flos": 4.510363947053875e+17,
1865
+ "trial_name": null,
1866
+ "trial_params": null
1867
+ }
LLM-Detector-V1-4w/checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
3
+ size 4664
LLM-Detector-V1-4w/eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.014986271038651466,
4
+ "eval_runtime": 87.9616,
5
+ "eval_samples_per_second": 22.544,
6
+ "eval_steps_per_second": 2.819
7
+ }
LLM-Detector-V1-4w/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
LLM-Detector-V1-4w/tokenization_baichuan.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ add_bos_token=add_bos_token,
81
+ add_eos_token=add_eos_token,
82
+ sp_model_kwargs=self.sp_model_kwargs,
83
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
84
+ **kwargs,
85
+ )
86
+ self.vocab_file = vocab_file
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.Load(vocab_file)
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ self.sp_model.Load(self.vocab_file)
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ def get_vocab(self):
108
+ """Returns vocab as a dict"""
109
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
110
+ vocab.update(self.added_tokens_encoder)
111
+ return vocab
112
+
113
+ def _tokenize(self, text):
114
+ """Returns a tokenized string."""
115
+ return self.sp_model.encode(text, out_type=str)
116
+
117
+ def _convert_token_to_id(self, token):
118
+ """Converts a token (str) in an id using the vocab."""
119
+ return self.sp_model.piece_to_id(token)
120
+
121
+ def _convert_id_to_token(self, index):
122
+ """Converts an index (integer) in a token (str) using the vocab."""
123
+ token = self.sp_model.IdToPiece(index)
124
+ return token
125
+
126
+ def convert_tokens_to_string(self, tokens):
127
+ """Converts a sequence of tokens (string) in a single string."""
128
+ current_sub_tokens = []
129
+ out_string = ""
130
+ prev_is_special = False
131
+ for i, token in enumerate(tokens):
132
+ # make sure that special tokens are not decoded using sentencepiece model
133
+ if token in self.all_special_tokens:
134
+ if not prev_is_special and i != 0:
135
+ out_string += " "
136
+ out_string += self.sp_model.decode(current_sub_tokens) + token
137
+ prev_is_special = True
138
+ current_sub_tokens = []
139
+ else:
140
+ current_sub_tokens.append(token)
141
+ prev_is_special = False
142
+ out_string += self.sp_model.decode(current_sub_tokens)
143
+ return out_string
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, "wb") as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
174
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
175
+
176
+ output = bos_token_id + token_ids_0 + eos_token_id
177
+
178
+ if token_ids_1 is not None:
179
+ output = output + bos_token_id + token_ids_1 + eos_token_id
180
+
181
+ return output
182
+
183
+ def get_special_tokens_mask(
184
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
185
+ ) -> List[int]:
186
+ """
187
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
188
+ special tokens using the tokenizer `prepare_for_model` method.
189
+
190
+ Args:
191
+ token_ids_0 (`List[int]`):
192
+ List of IDs.
193
+ token_ids_1 (`List[int]`, *optional*):
194
+ Optional second list of IDs for sequence pairs.
195
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
196
+ Whether or not the token list is already formatted with special tokens for the model.
197
+
198
+ Returns:
199
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
200
+ """
201
+ if already_has_special_tokens:
202
+ return super().get_special_tokens_mask(
203
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
204
+ )
205
+
206
+ bos_token_id = [1] if self.add_bos_token else []
207
+ eos_token_id = [1] if self.add_eos_token else []
208
+
209
+ if token_ids_1 is None:
210
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
211
+ return (
212
+ bos_token_id
213
+ + ([0] * len(token_ids_0))
214
+ + eos_token_id
215
+ + bos_token_id
216
+ + ([0] * len(token_ids_1))
217
+ + eos_token_id
218
+ )
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
225
+ sequence pair mask has the following format:
226
+
227
+ ```
228
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
229
+ | first sequence | second sequence |
230
+ ```
231
+
232
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
233
+
234
+ Args:
235
+ token_ids_0 (`List[int]`):
236
+ List of ids.
237
+ token_ids_1 (`List[int]`, *optional*):
238
+ Optional second list of IDs for sequence pairs.
239
+
240
+ Returns:
241
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
242
+ """
243
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
244
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
245
+
246
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
247
+
248
+ if token_ids_1 is not None:
249
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
250
+
251
+ return output
LLM-Detector-V1-4w/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
LLM-Detector-V1-4w/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "split_special_tokens": false,
39
+ "tokenizer_class": "BaichuanTokenizer",
40
+ "unk_token": {
41
+ "__type": "AddedToken",
42
+ "content": "<unk>",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": true
47
+ },
48
+ "use_fast": false
49
+ }
LLM-Detector-V1-4w/train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.06714861565509712,
4
+ "train_runtime": 17560.0547,
5
+ "train_samples_per_second": 6.434,
6
+ "train_steps_per_second": 0.201
7
+ }
LLM-Detector-V1-4w/trainer_log.jsonl ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 3531, "loss": 9.9461, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.999919851200522e-05, "epoch": 0.01, "percentage": 0.28, "elapsed_time": "0:00:50", "remaining_time": "4:59:13"}
2
+ {"current_steps": 20, "total_steps": 3531, "loss": 6.4908, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9996428002198536e-05, "epoch": 0.02, "percentage": 0.57, "elapsed_time": "0:01:40", "remaining_time": "4:52:40"}
3
+ {"current_steps": 30, "total_steps": 3531, "loss": 3.708, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9992242747551964e-05, "epoch": 0.03, "percentage": 0.85, "elapsed_time": "0:02:26", "remaining_time": "4:44:13"}
4
+ {"current_steps": 40, "total_steps": 3531, "loss": 0.8908, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99857130295276e-05, "epoch": 0.03, "percentage": 1.13, "elapsed_time": "0:03:14", "remaining_time": "4:42:21"}
5
+ {"current_steps": 50, "total_steps": 3531, "loss": 0.2454, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997720546222574e-05, "epoch": 0.04, "percentage": 1.42, "elapsed_time": "0:04:00", "remaining_time": "4:38:33"}
6
+ {"current_steps": 60, "total_steps": 3531, "loss": 0.1348, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.996672071909866e-05, "epoch": 0.05, "percentage": 1.7, "elapsed_time": "0:04:47", "remaining_time": "4:36:52"}
7
+ {"current_steps": 70, "total_steps": 3531, "loss": 0.0487, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.995425963011034e-05, "epoch": 0.06, "percentage": 1.98, "elapsed_time": "0:05:35", "remaining_time": "4:36:09"}
8
+ {"current_steps": 80, "total_steps": 3531, "loss": 0.0282, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.993982318167074e-05, "epoch": 0.07, "percentage": 2.27, "elapsed_time": "0:06:17", "remaining_time": "4:31:36"}
9
+ {"current_steps": 90, "total_steps": 3531, "loss": 0.0455, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.992341251655768e-05, "epoch": 0.08, "percentage": 2.55, "elapsed_time": "0:07:16", "remaining_time": "4:38:08"}
10
+ {"current_steps": 100, "total_steps": 3531, "loss": 0.0472, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9905028933826435e-05, "epoch": 0.08, "percentage": 2.83, "elapsed_time": "0:08:09", "remaining_time": "4:39:57"}
11
+ {"current_steps": 110, "total_steps": 3531, "loss": 0.0526, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.988467388870688e-05, "epoch": 0.09, "percentage": 3.12, "elapsed_time": "0:08:55", "remaining_time": "4:37:32"}
12
+ {"current_steps": 120, "total_steps": 3531, "loss": 0.0679, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.986234899248826e-05, "epoch": 0.1, "percentage": 3.4, "elapsed_time": "0:09:42", "remaining_time": "4:35:57"}
13
+ {"current_steps": 130, "total_steps": 3531, "loss": 0.0314, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.983805601239172e-05, "epoch": 0.11, "percentage": 3.68, "elapsed_time": "0:10:31", "remaining_time": "4:35:12"}
14
+ {"current_steps": 140, "total_steps": 3531, "loss": 0.0136, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.981179687143034e-05, "epoch": 0.12, "percentage": 3.96, "elapsed_time": "0:11:15", "remaining_time": "4:32:50"}
15
+ {"current_steps": 150, "total_steps": 3531, "loss": 0.0409, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.978357364825695e-05, "epoch": 0.13, "percentage": 4.25, "elapsed_time": "0:12:02", "remaining_time": "4:31:18"}
16
+ {"current_steps": 160, "total_steps": 3531, "loss": 0.0284, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.975338857699956e-05, "epoch": 0.14, "percentage": 4.53, "elapsed_time": "0:12:51", "remaining_time": "4:30:46"}
17
+ {"current_steps": 170, "total_steps": 3531, "loss": 0.0364, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.972124404708454e-05, "epoch": 0.14, "percentage": 4.81, "elapsed_time": "0:13:35", "remaining_time": "4:28:44"}
18
+ {"current_steps": 180, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.968714260304743e-05, "epoch": 0.15, "percentage": 5.1, "elapsed_time": "0:14:27", "remaining_time": "4:29:04"}
19
+ {"current_steps": 190, "total_steps": 3531, "loss": 0.0174, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.965108694433159e-05, "epoch": 0.16, "percentage": 5.38, "elapsed_time": "0:15:14", "remaining_time": "4:27:51"}
20
+ {"current_steps": 200, "total_steps": 3531, "loss": 0.0244, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.961307992507443e-05, "epoch": 0.17, "percentage": 5.66, "elapsed_time": "0:16:09", "remaining_time": "4:29:05"}
21
+ {"current_steps": 210, "total_steps": 3531, "loss": 0.0387, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.957312455388152e-05, "epoch": 0.18, "percentage": 5.95, "elapsed_time": "0:16:54", "remaining_time": "4:27:22"}
22
+ {"current_steps": 220, "total_steps": 3531, "loss": 0.0264, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.953122399358845e-05, "epoch": 0.19, "percentage": 6.23, "elapsed_time": "0:17:38", "remaining_time": "4:25:37"}
23
+ {"current_steps": 230, "total_steps": 3531, "loss": 0.0291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.948738156101042e-05, "epoch": 0.2, "percentage": 6.51, "elapsed_time": "0:18:21", "remaining_time": "4:23:32"}
24
+ {"current_steps": 240, "total_steps": 3531, "loss": 0.0214, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9441600726679694e-05, "epoch": 0.2, "percentage": 6.8, "elapsed_time": "0:19:03", "remaining_time": "4:21:27"}
25
+ {"current_steps": 250, "total_steps": 3531, "loss": 0.0116, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.939388511457092e-05, "epoch": 0.21, "percentage": 7.08, "elapsed_time": "0:19:46", "remaining_time": "4:19:35"}
26
+ {"current_steps": 260, "total_steps": 3531, "loss": 0.0191, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.934423850181419e-05, "epoch": 0.22, "percentage": 7.36, "elapsed_time": "0:20:32", "remaining_time": "4:18:26"}
27
+ {"current_steps": 270, "total_steps": 3531, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9292664818396117e-05, "epoch": 0.23, "percentage": 7.65, "elapsed_time": "0:21:13", "remaining_time": "4:16:15"}
28
+ {"current_steps": 280, "total_steps": 3531, "loss": 0.0184, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9239168146848666e-05, "epoch": 0.24, "percentage": 7.93, "elapsed_time": "0:22:03", "remaining_time": "4:16:06"}
29
+ {"current_steps": 290, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9183752721926036e-05, "epoch": 0.25, "percentage": 8.21, "elapsed_time": "0:22:49", "remaining_time": "4:15:10"}
30
+ {"current_steps": 300, "total_steps": 3531, "loss": 0.0223, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.912642293026942e-05, "epoch": 0.25, "percentage": 8.5, "elapsed_time": "0:23:32", "remaining_time": "4:13:37"}
31
+ {"current_steps": 310, "total_steps": 3531, "loss": 0.0405, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.906718331005979e-05, "epoch": 0.26, "percentage": 8.78, "elapsed_time": "0:24:20", "remaining_time": "4:12:50"}
32
+ {"current_steps": 320, "total_steps": 3531, "loss": 0.0461, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.900603855065861e-05, "epoch": 0.27, "percentage": 9.06, "elapsed_time": "0:25:14", "remaining_time": "4:13:13"}
33
+ {"current_steps": 330, "total_steps": 3531, "loss": 0.0199, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.894299349223665e-05, "epoch": 0.28, "percentage": 9.35, "elapsed_time": "0:25:58", "remaining_time": "4:12:00"}
34
+ {"current_steps": 340, "total_steps": 3531, "loss": 0.0193, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8878053125390875e-05, "epoch": 0.29, "percentage": 9.63, "elapsed_time": "0:26:45", "remaining_time": "4:11:11"}
35
+ {"current_steps": 350, "total_steps": 3531, "loss": 0.004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.881122259074935e-05, "epoch": 0.3, "percentage": 9.91, "elapsed_time": "0:27:27", "remaining_time": "4:09:36"}
36
+ {"current_steps": 360, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.874250717856433e-05, "epoch": 0.31, "percentage": 10.2, "elapsed_time": "0:28:12", "remaining_time": "4:08:30"}
37
+ {"current_steps": 370, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.867191232829348e-05, "epoch": 0.31, "percentage": 10.48, "elapsed_time": "0:29:00", "remaining_time": "4:07:51"}
38
+ {"current_steps": 380, "total_steps": 3531, "loss": 0.018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8599443628169295e-05, "epoch": 0.32, "percentage": 10.76, "elapsed_time": "0:29:44", "remaining_time": "4:06:37"}
39
+ {"current_steps": 390, "total_steps": 3531, "loss": 0.0261, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8525106814756754e-05, "epoch": 0.33, "percentage": 11.05, "elapsed_time": "0:30:35", "remaining_time": "4:06:20"}
40
+ {"current_steps": 400, "total_steps": 3531, "loss": 0.016, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.84489077724992e-05, "epoch": 0.34, "percentage": 11.33, "elapsed_time": "0:31:26", "remaining_time": "4:06:09"}
41
+ {"current_steps": 410, "total_steps": 3531, "loss": 0.0402, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8370852533252536e-05, "epoch": 0.35, "percentage": 11.61, "elapsed_time": "0:32:16", "remaining_time": "4:05:39"}
42
+ {"current_steps": 420, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8290947275807755e-05, "epoch": 0.36, "percentage": 11.89, "elapsed_time": "0:33:03", "remaining_time": "4:04:54"}
43
+ {"current_steps": 430, "total_steps": 3531, "loss": 0.008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8209198325401815e-05, "epoch": 0.37, "percentage": 12.18, "elapsed_time": "0:33:50", "remaining_time": "4:04:01"}
44
+ {"current_steps": 440, "total_steps": 3531, "loss": 0.0296, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8125612153216976e-05, "epoch": 0.37, "percentage": 12.46, "elapsed_time": "0:34:40", "remaining_time": "4:03:34"}
45
+ {"current_steps": 450, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.804019537586849e-05, "epoch": 0.38, "percentage": 12.74, "elapsed_time": "0:35:25", "remaining_time": "4:02:33"}
46
+ {"current_steps": 460, "total_steps": 3531, "loss": 0.0142, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7952954754880886e-05, "epoch": 0.39, "percentage": 13.03, "elapsed_time": "0:36:13", "remaining_time": "4:01:52"}
47
+ {"current_steps": 470, "total_steps": 3531, "loss": 0.0163, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7863897196152704e-05, "epoch": 0.4, "percentage": 13.31, "elapsed_time": "0:37:04", "remaining_time": "4:01:27"}
48
+ {"current_steps": 480, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7773029749409836e-05, "epoch": 0.41, "percentage": 13.59, "elapsed_time": "0:37:53", "remaining_time": "4:00:52"}
49
+ {"current_steps": 490, "total_steps": 3531, "loss": 0.0355, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.76803596076475e-05, "epoch": 0.42, "percentage": 13.88, "elapsed_time": "0:38:40", "remaining_time": "4:00:00"}
50
+ {"current_steps": 500, "total_steps": 3531, "loss": 0.0199, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.758589410656078e-05, "epoch": 0.42, "percentage": 14.16, "elapsed_time": "0:39:24", "remaining_time": "3:58:55"}
51
+ {"current_steps": 500, "total_steps": 3531, "loss": null, "eval_loss": 0.010466881096363068, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.42, "percentage": 14.16, "elapsed_time": "0:39:24", "remaining_time": "3:58:55"}
52
+ {"current_steps": 510, "total_steps": 3531, "loss": 0.0341, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.748964072396403e-05, "epoch": 0.43, "percentage": 14.44, "elapsed_time": "0:41:49", "remaining_time": "4:07:42"}
53
+ {"current_steps": 520, "total_steps": 3531, "loss": 0.0137, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7391607079198876e-05, "epoch": 0.44, "percentage": 14.73, "elapsed_time": "0:42:32", "remaining_time": "4:06:17"}
54
+ {"current_steps": 530, "total_steps": 3531, "loss": 0.0138, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7291800932531064e-05, "epoch": 0.45, "percentage": 15.01, "elapsed_time": "0:43:25", "remaining_time": "4:05:55"}
55
+ {"current_steps": 540, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.719023018453623e-05, "epoch": 0.46, "percentage": 15.29, "elapsed_time": "0:44:16", "remaining_time": "4:05:12"}
56
+ {"current_steps": 550, "total_steps": 3531, "loss": 0.0376, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.708690287547441e-05, "epoch": 0.47, "percentage": 15.58, "elapsed_time": "0:45:07", "remaining_time": "4:04:36"}
57
+ {"current_steps": 560, "total_steps": 3531, "loss": 0.006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.698182718465368e-05, "epoch": 0.48, "percentage": 15.86, "elapsed_time": "0:45:54", "remaining_time": "4:03:30"}
58
+ {"current_steps": 570, "total_steps": 3531, "loss": 0.0371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.687501142978258e-05, "epoch": 0.48, "percentage": 16.14, "elapsed_time": "0:46:42", "remaining_time": "4:02:38"}
59
+ {"current_steps": 580, "total_steps": 3531, "loss": 0.0322, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6766464066311765e-05, "epoch": 0.49, "percentage": 16.43, "elapsed_time": "0:47:39", "remaining_time": "4:02:27"}
60
+ {"current_steps": 590, "total_steps": 3531, "loss": 0.0086, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.665619368676466e-05, "epoch": 0.5, "percentage": 16.71, "elapsed_time": "0:48:24", "remaining_time": "4:01:20"}
61
+ {"current_steps": 600, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6544209020057285e-05, "epoch": 0.51, "percentage": 16.99, "elapsed_time": "0:49:11", "remaining_time": "4:00:18"}
62
+ {"current_steps": 610, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.643051893080725e-05, "epoch": 0.52, "percentage": 17.28, "elapsed_time": "0:49:55", "remaining_time": "3:59:02"}
63
+ {"current_steps": 620, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.631513241863209e-05, "epoch": 0.53, "percentage": 17.56, "elapsed_time": "0:50:44", "remaining_time": "3:58:13"}
64
+ {"current_steps": 630, "total_steps": 3531, "loss": 0.0187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.619805861743683e-05, "epoch": 0.54, "percentage": 17.84, "elapsed_time": "0:51:31", "remaining_time": "3:57:14"}
65
+ {"current_steps": 640, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.607930679469096e-05, "epoch": 0.54, "percentage": 18.13, "elapsed_time": "0:52:23", "remaining_time": "3:56:39"}
66
+ {"current_steps": 650, "total_steps": 3531, "loss": 0.0109, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.595888635069481e-05, "epoch": 0.55, "percentage": 18.41, "elapsed_time": "0:53:13", "remaining_time": "3:55:53"}
67
+ {"current_steps": 660, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5836806817835475e-05, "epoch": 0.56, "percentage": 18.69, "elapsed_time": "0:54:05", "remaining_time": "3:55:19"}
68
+ {"current_steps": 670, "total_steps": 3531, "loss": 0.0167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.57130778598322e-05, "epoch": 0.57, "percentage": 18.97, "elapsed_time": "0:54:52", "remaining_time": "3:54:19"}
69
+ {"current_steps": 680, "total_steps": 3531, "loss": 0.0143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5587709270971425e-05, "epoch": 0.58, "percentage": 19.26, "elapsed_time": "0:55:42", "remaining_time": "3:53:35"}
70
+ {"current_steps": 690, "total_steps": 3531, "loss": 0.0015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.546071097533145e-05, "epoch": 0.59, "percentage": 19.54, "elapsed_time": "0:56:31", "remaining_time": "3:52:42"}
71
+ {"current_steps": 700, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.533209302599691e-05, "epoch": 0.59, "percentage": 19.82, "elapsed_time": "0:57:19", "remaining_time": "3:51:51"}
72
+ {"current_steps": 710, "total_steps": 3531, "loss": 0.006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.520186560426292e-05, "epoch": 0.6, "percentage": 20.11, "elapsed_time": "0:58:08", "remaining_time": "3:50:59"}
73
+ {"current_steps": 720, "total_steps": 3531, "loss": 0.0093, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.507003901882915e-05, "epoch": 0.61, "percentage": 20.39, "elapsed_time": "0:59:02", "remaining_time": "3:50:31"}
74
+ {"current_steps": 730, "total_steps": 3531, "loss": 0.0046, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.493662370498383e-05, "epoch": 0.62, "percentage": 20.67, "elapsed_time": "0:59:49", "remaining_time": "3:49:31"}
75
+ {"current_steps": 740, "total_steps": 3531, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4801630223777665e-05, "epoch": 0.63, "percentage": 20.96, "elapsed_time": "1:00:38", "remaining_time": "3:48:43"}
76
+ {"current_steps": 750, "total_steps": 3531, "loss": 0.0102, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.466506926118782e-05, "epoch": 0.64, "percentage": 21.24, "elapsed_time": "1:01:26", "remaining_time": "3:47:51"}
77
+ {"current_steps": 760, "total_steps": 3531, "loss": 0.017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4526951627272074e-05, "epoch": 0.65, "percentage": 21.52, "elapsed_time": "1:02:18", "remaining_time": "3:47:10"}
78
+ {"current_steps": 770, "total_steps": 3531, "loss": 0.0033, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.438728825531305e-05, "epoch": 0.65, "percentage": 21.81, "elapsed_time": "1:03:04", "remaining_time": "3:46:11"}
79
+ {"current_steps": 780, "total_steps": 3531, "loss": 0.0061, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4246090200952816e-05, "epoch": 0.66, "percentage": 22.09, "elapsed_time": "1:03:46", "remaining_time": "3:44:57"}
80
+ {"current_steps": 790, "total_steps": 3531, "loss": 0.0032, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.410336864131762e-05, "epoch": 0.67, "percentage": 22.37, "elapsed_time": "1:04:35", "remaining_time": "3:44:07"}
81
+ {"current_steps": 800, "total_steps": 3531, "loss": 0.0043, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.395913487413324e-05, "epoch": 0.68, "percentage": 22.66, "elapsed_time": "1:05:23", "remaining_time": "3:43:13"}
82
+ {"current_steps": 810, "total_steps": 3531, "loss": 0.0063, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3813400316830576e-05, "epoch": 0.69, "percentage": 22.94, "elapsed_time": "1:06:14", "remaining_time": "3:42:32"}
83
+ {"current_steps": 820, "total_steps": 3531, "loss": 0.0273, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.36661765056419e-05, "epoch": 0.7, "percentage": 23.22, "elapsed_time": "1:07:01", "remaining_time": "3:41:34"}
84
+ {"current_steps": 830, "total_steps": 3531, "loss": 0.0125, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.351747509468763e-05, "epoch": 0.71, "percentage": 23.51, "elapsed_time": "1:07:50", "remaining_time": "3:40:45"}
85
+ {"current_steps": 840, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.336730785505382e-05, "epoch": 0.71, "percentage": 23.79, "elapsed_time": "1:08:46", "remaining_time": "3:40:18"}
86
+ {"current_steps": 850, "total_steps": 3531, "loss": 0.0127, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3215686673860384e-05, "epoch": 0.72, "percentage": 24.07, "elapsed_time": "1:09:39", "remaining_time": "3:39:42"}
87
+ {"current_steps": 860, "total_steps": 3531, "loss": 0.0161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.306262355332006e-05, "epoch": 0.73, "percentage": 24.36, "elapsed_time": "1:10:26", "remaining_time": "3:38:45"}
88
+ {"current_steps": 870, "total_steps": 3531, "loss": 0.0169, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.290813060978839e-05, "epoch": 0.74, "percentage": 24.64, "elapsed_time": "1:11:10", "remaining_time": "3:37:41"}
89
+ {"current_steps": 880, "total_steps": 3531, "loss": 0.0081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2752220072804564e-05, "epoch": 0.75, "percentage": 24.92, "elapsed_time": "1:12:00", "remaining_time": "3:36:56"}
90
+ {"current_steps": 890, "total_steps": 3531, "loss": 0.0131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.259490428412335e-05, "epoch": 0.76, "percentage": 25.21, "elapsed_time": "1:12:43", "remaining_time": "3:35:47"}
91
+ {"current_steps": 900, "total_steps": 3531, "loss": 0.0205, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.243619569673814e-05, "epoch": 0.76, "percentage": 25.49, "elapsed_time": "1:13:33", "remaining_time": "3:35:01"}
92
+ {"current_steps": 910, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2276106873895143e-05, "epoch": 0.77, "percentage": 25.77, "elapsed_time": "1:14:18", "remaining_time": "3:34:02"}
93
+ {"current_steps": 920, "total_steps": 3531, "loss": 0.018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2114650488098936e-05, "epoch": 0.78, "percentage": 26.05, "elapsed_time": "1:15:02", "remaining_time": "3:32:59"}
94
+ {"current_steps": 930, "total_steps": 3531, "loss": 0.0083, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.19518393201093e-05, "epoch": 0.79, "percentage": 26.34, "elapsed_time": "1:15:46", "remaining_time": "3:31:56"}
95
+ {"current_steps": 940, "total_steps": 3531, "loss": 0.0291, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.178768625792949e-05, "epoch": 0.8, "percentage": 26.62, "elapsed_time": "1:16:35", "remaining_time": "3:31:06"}
96
+ {"current_steps": 950, "total_steps": 3531, "loss": 0.0226, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.162220429578605e-05, "epoch": 0.81, "percentage": 26.9, "elapsed_time": "1:17:20", "remaining_time": "3:30:06"}
97
+ {"current_steps": 960, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.145540653310018e-05, "epoch": 0.82, "percentage": 27.19, "elapsed_time": "1:18:15", "remaining_time": "3:29:34"}
98
+ {"current_steps": 970, "total_steps": 3531, "loss": 0.0078, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.128730617345084e-05, "epoch": 0.82, "percentage": 27.47, "elapsed_time": "1:19:05", "remaining_time": "3:28:47"}
99
+ {"current_steps": 980, "total_steps": 3531, "loss": 0.0084, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.111791652352952e-05, "epoch": 0.83, "percentage": 27.75, "elapsed_time": "1:19:54", "remaining_time": "3:28:00"}
100
+ {"current_steps": 990, "total_steps": 3531, "loss": 0.0044, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.094725099208688e-05, "epoch": 0.84, "percentage": 28.04, "elapsed_time": "1:20:38", "remaining_time": "3:26:58"}
101
+ {"current_steps": 1000, "total_steps": 3531, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.077532308887141e-05, "epoch": 0.85, "percentage": 28.32, "elapsed_time": "1:21:29", "remaining_time": "3:26:14"}
102
+ {"current_steps": 1000, "total_steps": 3531, "loss": null, "eval_loss": 0.01175768580287695, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.85, "percentage": 28.32, "elapsed_time": "1:21:29", "remaining_time": "3:26:14"}
103
+ {"current_steps": 1010, "total_steps": 3531, "loss": 0.0011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.060214642355989e-05, "epoch": 0.86, "percentage": 28.6, "elapsed_time": "1:23:41", "remaining_time": "3:28:53"}
104
+ {"current_steps": 1020, "total_steps": 3531, "loss": 0.021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.042773470468016e-05, "epoch": 0.87, "percentage": 28.89, "elapsed_time": "1:24:23", "remaining_time": "3:27:43"}
105
+ {"current_steps": 1030, "total_steps": 3531, "loss": 0.0424, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0252101738525916e-05, "epoch": 0.88, "percentage": 29.17, "elapsed_time": "1:25:17", "remaining_time": "3:27:05"}
106
+ {"current_steps": 1040, "total_steps": 3531, "loss": 0.0194, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.0075261428063806e-05, "epoch": 0.88, "percentage": 29.45, "elapsed_time": "1:26:08", "remaining_time": "3:26:18"}
107
+ {"current_steps": 1050, "total_steps": 3531, "loss": 0.0025, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9897227771832924e-05, "epoch": 0.89, "percentage": 29.74, "elapsed_time": "1:26:56", "remaining_time": "3:25:25"}
108
+ {"current_steps": 1060, "total_steps": 3531, "loss": 0.0044, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.971801486283665e-05, "epoch": 0.9, "percentage": 30.02, "elapsed_time": "1:27:46", "remaining_time": "3:24:36"}
109
+ {"current_steps": 1070, "total_steps": 3531, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.953763688742708e-05, "epoch": 0.91, "percentage": 30.3, "elapsed_time": "1:28:37", "remaining_time": "3:23:50"}
110
+ {"current_steps": 1080, "total_steps": 3531, "loss": 0.0071, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9356108124182067e-05, "epoch": 0.92, "percentage": 30.59, "elapsed_time": "1:29:21", "remaining_time": "3:22:48"}
111
+ {"current_steps": 1090, "total_steps": 3531, "loss": 0.0145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.9173442942774885e-05, "epoch": 0.93, "percentage": 30.87, "elapsed_time": "1:30:12", "remaining_time": "3:22:00"}
112
+ {"current_steps": 1100, "total_steps": 3531, "loss": 0.0371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.898965580283681e-05, "epoch": 0.93, "percentage": 31.15, "elapsed_time": "1:30:55", "remaining_time": "3:20:55"}
113
+ {"current_steps": 1110, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.880476125281244e-05, "epoch": 0.94, "percentage": 31.44, "elapsed_time": "1:31:47", "remaining_time": "3:20:13"}
114
+ {"current_steps": 1120, "total_steps": 3531, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.861877392880808e-05, "epoch": 0.95, "percentage": 31.72, "elapsed_time": "1:32:42", "remaining_time": "3:19:34"}
115
+ {"current_steps": 1130, "total_steps": 3531, "loss": 0.008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.843170855343317e-05, "epoch": 0.96, "percentage": 32.0, "elapsed_time": "1:33:28", "remaining_time": "3:18:36"}
116
+ {"current_steps": 1140, "total_steps": 3531, "loss": 0.0089, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8243579934634846e-05, "epoch": 0.97, "percentage": 32.29, "elapsed_time": "1:34:16", "remaining_time": "3:17:44"}
117
+ {"current_steps": 1150, "total_steps": 3531, "loss": 0.0034, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.805440296452574e-05, "epoch": 0.98, "percentage": 32.57, "elapsed_time": "1:35:03", "remaining_time": "3:16:48"}
118
+ {"current_steps": 1160, "total_steps": 3531, "loss": 0.0019, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.786419261820514e-05, "epoch": 0.99, "percentage": 32.85, "elapsed_time": "1:35:53", "remaining_time": "3:15:59"}
119
+ {"current_steps": 1170, "total_steps": 3531, "loss": 0.0164, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7672963952573614e-05, "epoch": 0.99, "percentage": 33.14, "elapsed_time": "1:36:42", "remaining_time": "3:15:09"}
120
+ {"current_steps": 1180, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.748073210514102e-05, "epoch": 1.0, "percentage": 33.42, "elapsed_time": "1:37:25", "remaining_time": "3:14:07"}
121
+ {"current_steps": 1190, "total_steps": 3531, "loss": 0.0072, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.728751229282836e-05, "epoch": 1.01, "percentage": 33.7, "elapsed_time": "1:38:14", "remaining_time": "3:13:16"}
122
+ {"current_steps": 1200, "total_steps": 3531, "loss": 0.0041, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.70933198107631e-05, "epoch": 1.02, "percentage": 33.98, "elapsed_time": "1:39:02", "remaining_time": "3:12:22"}
123
+ {"current_steps": 1210, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.689817003106852e-05, "epoch": 1.03, "percentage": 34.27, "elapsed_time": "1:39:45", "remaining_time": "3:11:20"}
124
+ {"current_steps": 1220, "total_steps": 3531, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.670207840164678e-05, "epoch": 1.04, "percentage": 34.55, "elapsed_time": "1:40:32", "remaining_time": "3:10:27"}
125
+ {"current_steps": 1230, "total_steps": 3531, "loss": 0.0026, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.650506044495615e-05, "epoch": 1.05, "percentage": 34.83, "elapsed_time": "1:41:23", "remaining_time": "3:09:40"}
126
+ {"current_steps": 1240, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.630713175678222e-05, "epoch": 1.05, "percentage": 35.12, "elapsed_time": "1:42:11", "remaining_time": "3:08:49"}
127
+ {"current_steps": 1250, "total_steps": 3531, "loss": 0.0069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.610830800500335e-05, "epoch": 1.06, "percentage": 35.4, "elapsed_time": "1:43:06", "remaining_time": "3:08:09"}
128
+ {"current_steps": 1260, "total_steps": 3531, "loss": 0.0081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.590860492835046e-05, "epoch": 1.07, "percentage": 35.68, "elapsed_time": "1:43:59", "remaining_time": "3:07:26"}
129
+ {"current_steps": 1270, "total_steps": 3531, "loss": 0.0107, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5708038335161134e-05, "epoch": 1.08, "percentage": 35.97, "elapsed_time": "1:44:51", "remaining_time": "3:06:40"}
130
+ {"current_steps": 1280, "total_steps": 3531, "loss": 0.0074, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.550662410212819e-05, "epoch": 1.09, "percentage": 36.25, "elapsed_time": "1:45:35", "remaining_time": "3:05:41"}
131
+ {"current_steps": 1290, "total_steps": 3531, "loss": 0.0048, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5304378173043e-05, "epoch": 1.1, "percentage": 36.53, "elapsed_time": "1:46:22", "remaining_time": "3:04:46"}
132
+ {"current_steps": 1300, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5101316557533294e-05, "epoch": 1.1, "percentage": 36.82, "elapsed_time": "1:47:13", "remaining_time": "3:04:00"}
133
+ {"current_steps": 1310, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.489745532979593e-05, "epoch": 1.11, "percentage": 37.1, "elapsed_time": "1:47:59", "remaining_time": "3:03:05"}
134
+ {"current_steps": 1320, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.469281062732442e-05, "epoch": 1.12, "percentage": 37.38, "elapsed_time": "1:48:52", "remaining_time": "3:02:21"}
135
+ {"current_steps": 1330, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.448739864963154e-05, "epoch": 1.13, "percentage": 37.67, "elapsed_time": "1:49:37", "remaining_time": "3:01:25"}
136
+ {"current_steps": 1340, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4281235656966915e-05, "epoch": 1.14, "percentage": 37.95, "elapsed_time": "1:50:24", "remaining_time": "3:00:30"}
137
+ {"current_steps": 1350, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4074337969029965e-05, "epoch": 1.15, "percentage": 38.23, "elapsed_time": "1:51:09", "remaining_time": "2:59:35"}
138
+ {"current_steps": 1360, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.386672196367799e-05, "epoch": 1.16, "percentage": 38.52, "elapsed_time": "1:52:06", "remaining_time": "2:58:58"}
139
+ {"current_steps": 1370, "total_steps": 3531, "loss": 0.0131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.365840407562974e-05, "epoch": 1.16, "percentage": 38.8, "elapsed_time": "1:52:52", "remaining_time": "2:58:02"}
140
+ {"current_steps": 1380, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3449400795164416e-05, "epoch": 1.17, "percentage": 39.08, "elapsed_time": "1:53:36", "remaining_time": "2:57:04"}
141
+ {"current_steps": 1390, "total_steps": 3531, "loss": 0.0058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.323972866681637e-05, "epoch": 1.18, "percentage": 39.37, "elapsed_time": "1:54:22", "remaining_time": "2:56:09"}
142
+ {"current_steps": 1400, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3029404288065426e-05, "epoch": 1.19, "percentage": 39.65, "elapsed_time": "1:55:10", "remaining_time": "2:55:18"}
143
+ {"current_steps": 1410, "total_steps": 3531, "loss": 0.0029, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2818444308023e-05, "epoch": 1.2, "percentage": 39.93, "elapsed_time": "1:55:56", "remaining_time": "2:54:24"}
144
+ {"current_steps": 1420, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2606865426114234e-05, "epoch": 1.21, "percentage": 40.22, "elapsed_time": "1:56:46", "remaining_time": "2:53:36"}
145
+ {"current_steps": 1430, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.239468439075604e-05, "epoch": 1.21, "percentage": 40.5, "elapsed_time": "1:57:36", "remaining_time": "2:52:47"}
146
+ {"current_steps": 1440, "total_steps": 3531, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2181917998031326e-05, "epoch": 1.22, "percentage": 40.78, "elapsed_time": "1:58:17", "remaining_time": "2:51:46"}
147
+ {"current_steps": 1450, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.196858309035941e-05, "epoch": 1.23, "percentage": 41.06, "elapsed_time": "1:59:09", "remaining_time": "2:51:00"}
148
+ {"current_steps": 1460, "total_steps": 3531, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.175469655516284e-05, "epoch": 1.24, "percentage": 41.35, "elapsed_time": "1:59:58", "remaining_time": "2:50:10"}
149
+ {"current_steps": 1470, "total_steps": 3531, "loss": 0.0037, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.154027532353052e-05, "epoch": 1.25, "percentage": 41.63, "elapsed_time": "2:00:51", "remaining_time": "2:49:27"}
150
+ {"current_steps": 1480, "total_steps": 3531, "loss": 0.0065, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.132533636887753e-05, "epoch": 1.26, "percentage": 41.91, "elapsed_time": "2:01:40", "remaining_time": "2:48:37"}
151
+ {"current_steps": 1490, "total_steps": 3531, "loss": 0.0092, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1109896705601485e-05, "epoch": 1.27, "percentage": 42.2, "elapsed_time": "2:02:28", "remaining_time": "2:47:46"}
152
+ {"current_steps": 1500, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0893973387735687e-05, "epoch": 1.27, "percentage": 42.48, "elapsed_time": "2:03:13", "remaining_time": "2:46:50"}
153
+ {"current_steps": 1500, "total_steps": 3531, "loss": null, "eval_loss": 0.010954583063721657, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.27, "percentage": 42.48, "elapsed_time": "2:03:13", "remaining_time": "2:46:50"}
154
+ {"current_steps": 1510, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.067758350759917e-05, "epoch": 1.28, "percentage": 42.76, "elapsed_time": "2:05:24", "remaining_time": "2:47:51"}
155
+ {"current_steps": 1520, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.046074419444366e-05, "epoch": 1.29, "percentage": 43.05, "elapsed_time": "2:06:10", "remaining_time": "2:46:55"}
156
+ {"current_steps": 1530, "total_steps": 3531, "loss": 0.001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0243472613097656e-05, "epoch": 1.3, "percentage": 43.33, "elapsed_time": "2:07:01", "remaining_time": "2:46:07"}
157
+ {"current_steps": 1540, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.002578596260765e-05, "epoch": 1.31, "percentage": 43.61, "elapsed_time": "2:07:47", "remaining_time": "2:45:13"}
158
+ {"current_steps": 1550, "total_steps": 3531, "loss": 0.0086, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.980770147487668e-05, "epoch": 1.32, "percentage": 43.9, "elapsed_time": "2:08:29", "remaining_time": "2:44:13"}
159
+ {"current_steps": 1560, "total_steps": 3531, "loss": 0.0021, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.958923641330028e-05, "epoch": 1.33, "percentage": 44.18, "elapsed_time": "2:09:24", "remaining_time": "2:43:30"}
160
+ {"current_steps": 1570, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9370408071399898e-05, "epoch": 1.33, "percentage": 44.46, "elapsed_time": "2:10:11", "remaining_time": "2:42:37"}
161
+ {"current_steps": 1580, "total_steps": 3531, "loss": 0.0076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9151233771453956e-05, "epoch": 1.34, "percentage": 44.75, "elapsed_time": "2:11:11", "remaining_time": "2:41:59"}
162
+ {"current_steps": 1590, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8931730863126666e-05, "epoch": 1.35, "percentage": 45.03, "elapsed_time": "2:12:04", "remaining_time": "2:41:14"}
163
+ {"current_steps": 1600, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.871191672209459e-05, "epoch": 1.36, "percentage": 45.31, "elapsed_time": "2:12:56", "remaining_time": "2:40:26"}
164
+ {"current_steps": 1610, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8491808748671255e-05, "epoch": 1.37, "percentage": 45.6, "elapsed_time": "2:13:44", "remaining_time": "2:39:34"}
165
+ {"current_steps": 1620, "total_steps": 3531, "loss": 0.0115, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8271424366429706e-05, "epoch": 1.38, "percentage": 45.88, "elapsed_time": "2:14:35", "remaining_time": "2:38:45"}
166
+ {"current_steps": 1630, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8050781020823296e-05, "epoch": 1.38, "percentage": 46.16, "elapsed_time": "2:15:21", "remaining_time": "2:37:51"}
167
+ {"current_steps": 1640, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7829896177804716e-05, "epoch": 1.39, "percentage": 46.45, "elapsed_time": "2:16:13", "remaining_time": "2:37:04"}
168
+ {"current_steps": 1650, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.760878732244339e-05, "epoch": 1.4, "percentage": 46.73, "elapsed_time": "2:17:04", "remaining_time": "2:36:15"}
169
+ {"current_steps": 1660, "total_steps": 3531, "loss": 0.0024, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7387471957541405e-05, "epoch": 1.41, "percentage": 47.01, "elapsed_time": "2:17:52", "remaining_time": "2:35:24"}
170
+ {"current_steps": 1670, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7165967602247964e-05, "epoch": 1.42, "percentage": 47.3, "elapsed_time": "2:18:40", "remaining_time": "2:34:31"}
171
+ {"current_steps": 1680, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.694429179067261e-05, "epoch": 1.43, "percentage": 47.58, "elapsed_time": "2:19:25", "remaining_time": "2:33:37"}
172
+ {"current_steps": 1690, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6744651468034758e-05, "epoch": 1.44, "percentage": 47.86, "elapsed_time": "2:20:14", "remaining_time": "2:32:46"}
173
+ {"current_steps": 1700, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6522698243485527e-05, "epoch": 1.44, "percentage": 48.15, "elapsed_time": "2:20:59", "remaining_time": "2:31:51"}
174
+ {"current_steps": 1710, "total_steps": 3531, "loss": 0.0058, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6300624483347926e-05, "epoch": 1.45, "percentage": 48.43, "elapsed_time": "2:21:44", "remaining_time": "2:30:56"}
175
+ {"current_steps": 1720, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.607844776680513e-05, "epoch": 1.46, "percentage": 48.71, "elapsed_time": "2:22:34", "remaining_time": "2:30:07"}
176
+ {"current_steps": 1730, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.585618568119027e-05, "epoch": 1.47, "percentage": 48.99, "elapsed_time": "2:23:21", "remaining_time": "2:29:14"}
177
+ {"current_steps": 1740, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.56338558205942e-05, "epoch": 1.48, "percentage": 49.28, "elapsed_time": "2:24:08", "remaining_time": "2:28:21"}
178
+ {"current_steps": 1750, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5411475784472805e-05, "epoch": 1.49, "percentage": 49.56, "elapsed_time": "2:24:58", "remaining_time": "2:27:32"}
179
+ {"current_steps": 1760, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5189063176253825e-05, "epoch": 1.5, "percentage": 49.84, "elapsed_time": "2:25:41", "remaining_time": "2:26:36"}
180
+ {"current_steps": 1770, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.496663560194338e-05, "epoch": 1.5, "percentage": 50.13, "elapsed_time": "2:26:28", "remaining_time": "2:25:43"}
181
+ {"current_steps": 1780, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4744210668732295e-05, "epoch": 1.51, "percentage": 50.41, "elapsed_time": "2:27:14", "remaining_time": "2:24:50"}
182
+ {"current_steps": 1790, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.452180598360232e-05, "epoch": 1.52, "percentage": 50.69, "elapsed_time": "2:28:01", "remaining_time": "2:23:58"}
183
+ {"current_steps": 1800, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.429943915193239e-05, "epoch": 1.53, "percentage": 50.98, "elapsed_time": "2:28:52", "remaining_time": "2:23:10"}
184
+ {"current_steps": 1810, "total_steps": 3531, "loss": 0.0146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4077127776104984e-05, "epoch": 1.54, "percentage": 51.26, "elapsed_time": "2:29:40", "remaining_time": "2:22:18"}
185
+ {"current_steps": 1820, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3854889454112748e-05, "epoch": 1.55, "percentage": 51.54, "elapsed_time": "2:30:26", "remaining_time": "2:21:25"}
186
+ {"current_steps": 1830, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3632741778165442e-05, "epoch": 1.55, "percentage": 51.83, "elapsed_time": "2:31:09", "remaining_time": "2:20:30"}
187
+ {"current_steps": 1840, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3410702333297356e-05, "epoch": 1.56, "percentage": 52.11, "elapsed_time": "2:31:58", "remaining_time": "2:19:40"}
188
+ {"current_steps": 1850, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.318878869597528e-05, "epoch": 1.57, "percentage": 52.39, "elapsed_time": "2:32:47", "remaining_time": "2:18:49"}
189
+ {"current_steps": 1860, "total_steps": 3531, "loss": 0.0073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2967018432707213e-05, "epoch": 1.58, "percentage": 52.68, "elapsed_time": "2:33:35", "remaining_time": "2:17:59"}
190
+ {"current_steps": 1870, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2745409098651744e-05, "epoch": 1.59, "percentage": 52.96, "elapsed_time": "2:34:20", "remaining_time": "2:17:05"}
191
+ {"current_steps": 1880, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2523978236228442e-05, "epoch": 1.6, "percentage": 53.24, "elapsed_time": "2:35:06", "remaining_time": "2:16:12"}
192
+ {"current_steps": 1890, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2302743373729205e-05, "epoch": 1.61, "percentage": 53.53, "elapsed_time": "2:35:55", "remaining_time": "2:15:22"}
193
+ {"current_steps": 1900, "total_steps": 3531, "loss": 0.0136, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2081722023930743e-05, "epoch": 1.61, "percentage": 53.81, "elapsed_time": "2:36:42", "remaining_time": "2:14:31"}
194
+ {"current_steps": 1910, "total_steps": 3531, "loss": 0.0051, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1860931682708248e-05, "epoch": 1.62, "percentage": 54.09, "elapsed_time": "2:37:31", "remaining_time": "2:13:41"}
195
+ {"current_steps": 1920, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.164038982765047e-05, "epoch": 1.63, "percentage": 54.38, "elapsed_time": "2:38:20", "remaining_time": "2:12:51"}
196
+ {"current_steps": 1930, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1420113916676183e-05, "epoch": 1.64, "percentage": 54.66, "elapsed_time": "2:39:08", "remaining_time": "2:12:00"}
197
+ {"current_steps": 1940, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1200121386652246e-05, "epoch": 1.65, "percentage": 54.94, "elapsed_time": "2:39:54", "remaining_time": "2:11:08"}
198
+ {"current_steps": 1950, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0980429652013297e-05, "epoch": 1.66, "percentage": 55.23, "elapsed_time": "2:40:39", "remaining_time": "2:10:15"}
199
+ {"current_steps": 1960, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0761056103383258e-05, "epoch": 1.67, "percentage": 55.51, "elapsed_time": "2:41:20", "remaining_time": "2:09:19"}
200
+ {"current_steps": 1970, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0542018106198697e-05, "epoch": 1.67, "percentage": 55.79, "elapsed_time": "2:42:03", "remaining_time": "2:08:24"}
201
+ {"current_steps": 1980, "total_steps": 3531, "loss": 0.005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0323332999334198e-05, "epoch": 1.68, "percentage": 56.07, "elapsed_time": "2:42:44", "remaining_time": "2:07:29"}
202
+ {"current_steps": 1990, "total_steps": 3531, "loss": 0.0149, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.010501809372981e-05, "epoch": 1.69, "percentage": 56.36, "elapsed_time": "2:43:46", "remaining_time": "2:06:49"}
203
+ {"current_steps": 2000, "total_steps": 3531, "loss": 0.0143, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.988709067102076e-05, "epoch": 1.7, "percentage": 56.64, "elapsed_time": "2:44:34", "remaining_time": "2:05:58"}
204
+ {"current_steps": 2000, "total_steps": 3531, "loss": null, "eval_loss": 0.013543435372412205, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.7, "percentage": 56.64, "elapsed_time": "2:44:34", "remaining_time": "2:05:58"}
205
+ {"current_steps": 2010, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.966956798216943e-05, "epoch": 1.71, "percentage": 56.92, "elapsed_time": "2:46:50", "remaining_time": "2:06:14"}
206
+ {"current_steps": 2020, "total_steps": 3531, "loss": 0.0038, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.945246724609978e-05, "epoch": 1.72, "percentage": 57.21, "elapsed_time": "2:47:34", "remaining_time": "2:05:20"}
207
+ {"current_steps": 2030, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9235805648334342e-05, "epoch": 1.72, "percentage": 57.49, "elapsed_time": "2:48:23", "remaining_time": "2:04:30"}
208
+ {"current_steps": 2040, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9019600339633798e-05, "epoch": 1.73, "percentage": 57.77, "elapsed_time": "2:49:08", "remaining_time": "2:03:37"}
209
+ {"current_steps": 2050, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8803868434639345e-05, "epoch": 1.74, "percentage": 58.06, "elapsed_time": "2:49:50", "remaining_time": "2:02:42"}
210
+ {"current_steps": 2060, "total_steps": 3531, "loss": 0.0009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.858862701051791e-05, "epoch": 1.75, "percentage": 58.34, "elapsed_time": "2:50:42", "remaining_time": "2:01:54"}
211
+ {"current_steps": 2070, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8373893105610356e-05, "epoch": 1.76, "percentage": 58.62, "elapsed_time": "2:51:24", "remaining_time": "2:00:58"}
212
+ {"current_steps": 2080, "total_steps": 3531, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.815968371808273e-05, "epoch": 1.77, "percentage": 58.91, "elapsed_time": "2:52:07", "remaining_time": "2:00:04"}
213
+ {"current_steps": 2090, "total_steps": 3531, "loss": 0.0138, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7946015804580688e-05, "epoch": 1.78, "percentage": 59.19, "elapsed_time": "2:52:59", "remaining_time": "1:59:16"}
214
+ {"current_steps": 2100, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7732906278887225e-05, "epoch": 1.78, "percentage": 59.47, "elapsed_time": "2:53:55", "remaining_time": "1:58:30"}
215
+ {"current_steps": 2110, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7520372010583815e-05, "epoch": 1.79, "percentage": 59.76, "elapsed_time": "2:54:47", "remaining_time": "1:57:43"}
216
+ {"current_steps": 2120, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7308429823714995e-05, "epoch": 1.8, "percentage": 60.04, "elapsed_time": "2:55:30", "remaining_time": "1:56:48"}
217
+ {"current_steps": 2130, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.709709649545662e-05, "epoch": 1.81, "percentage": 60.32, "elapsed_time": "2:56:15", "remaining_time": "1:55:55"}
218
+ {"current_steps": 2140, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.688638875478777e-05, "epoch": 1.82, "percentage": 60.61, "elapsed_time": "2:57:03", "remaining_time": "1:55:05"}
219
+ {"current_steps": 2150, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.66763232811665e-05, "epoch": 1.83, "percentage": 60.89, "elapsed_time": "2:57:49", "remaining_time": "1:54:13"}
220
+ {"current_steps": 2160, "total_steps": 3531, "loss": 0.012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6466916703209535e-05, "epoch": 1.84, "percentage": 61.17, "elapsed_time": "2:58:32", "remaining_time": "1:53:19"}
221
+ {"current_steps": 2170, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.625818559737592e-05, "epoch": 1.84, "percentage": 61.46, "elapsed_time": "2:59:20", "remaining_time": "1:52:29"}
222
+ {"current_steps": 2180, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.605014648665486e-05, "epoch": 1.85, "percentage": 61.74, "elapsed_time": "3:00:11", "remaining_time": "1:51:40"}
223
+ {"current_steps": 2190, "total_steps": 3531, "loss": 0.0047, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.584281583925779e-05, "epoch": 1.86, "percentage": 62.02, "elapsed_time": "3:00:56", "remaining_time": "1:50:47"}
224
+ {"current_steps": 2200, "total_steps": 3531, "loss": 0.0126, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5636210067314744e-05, "epoch": 1.87, "percentage": 62.31, "elapsed_time": "3:01:41", "remaining_time": "1:49:55"}
225
+ {"current_steps": 2210, "total_steps": 3531, "loss": 0.0015, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5430345525575186e-05, "epoch": 1.88, "percentage": 62.59, "elapsed_time": "3:02:31", "remaining_time": "1:49:06"}
226
+ {"current_steps": 2220, "total_steps": 3531, "loss": 0.0018, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5225238510113377e-05, "epoch": 1.89, "percentage": 62.87, "elapsed_time": "3:03:17", "remaining_time": "1:48:14"}
227
+ {"current_steps": 2230, "total_steps": 3531, "loss": 0.0057, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5020905257038403e-05, "epoch": 1.89, "percentage": 63.15, "elapsed_time": "3:04:14", "remaining_time": "1:47:29"}
228
+ {"current_steps": 2240, "total_steps": 3531, "loss": 0.0036, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.481736194120894e-05, "epoch": 1.9, "percentage": 63.44, "elapsed_time": "3:04:58", "remaining_time": "1:46:36"}
229
+ {"current_steps": 2250, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4614624674952842e-05, "epoch": 1.91, "percentage": 63.72, "elapsed_time": "3:05:56", "remaining_time": "1:45:52"}
230
+ {"current_steps": 2260, "total_steps": 3531, "loss": 0.0054, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4412709506791725e-05, "epoch": 1.92, "percentage": 64.0, "elapsed_time": "3:06:46", "remaining_time": "1:45:02"}
231
+ {"current_steps": 2270, "total_steps": 3531, "loss": 0.0039, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4211632420170558e-05, "epoch": 1.93, "percentage": 64.29, "elapsed_time": "3:07:38", "remaining_time": "1:44:14"}
232
+ {"current_steps": 2280, "total_steps": 3531, "loss": 0.0017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4011409332192472e-05, "epoch": 1.94, "percentage": 64.57, "elapsed_time": "3:08:26", "remaining_time": "1:43:23"}
233
+ {"current_steps": 2290, "total_steps": 3531, "loss": 0.0181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3812056092358686e-05, "epoch": 1.95, "percentage": 64.85, "elapsed_time": "3:09:13", "remaining_time": "1:42:32"}
234
+ {"current_steps": 2300, "total_steps": 3531, "loss": 0.0035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3613588481313977e-05, "epoch": 1.95, "percentage": 65.14, "elapsed_time": "3:10:01", "remaining_time": "1:41:42"}
235
+ {"current_steps": 2310, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3416022209597429e-05, "epoch": 1.96, "percentage": 65.42, "elapsed_time": "3:10:49", "remaining_time": "1:40:51"}
236
+ {"current_steps": 2320, "total_steps": 3531, "loss": 0.0005, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3219372916398826e-05, "epoch": 1.97, "percentage": 65.7, "elapsed_time": "3:11:36", "remaining_time": "1:40:00"}
237
+ {"current_steps": 2330, "total_steps": 3531, "loss": 0.0012, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.302365616832063e-05, "epoch": 1.98, "percentage": 65.99, "elapsed_time": "3:12:23", "remaining_time": "1:39:10"}
238
+ {"current_steps": 2340, "total_steps": 3531, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2828887458145806e-05, "epoch": 1.99, "percentage": 66.27, "elapsed_time": "3:13:16", "remaining_time": "1:38:22"}
239
+ {"current_steps": 2350, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2635082203611375e-05, "epoch": 2.0, "percentage": 66.55, "elapsed_time": "3:14:02", "remaining_time": "1:37:31"}
240
+ {"current_steps": 2360, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2442255746187954e-05, "epoch": 2.01, "percentage": 66.84, "elapsed_time": "3:14:42", "remaining_time": "1:36:36"}
241
+ {"current_steps": 2370, "total_steps": 3531, "loss": 0.0009, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2250423349865387e-05, "epoch": 2.01, "percentage": 67.12, "elapsed_time": "3:15:30", "remaining_time": "1:35:46"}
242
+ {"current_steps": 2380, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2059600199944388e-05, "epoch": 2.02, "percentage": 67.4, "elapsed_time": "3:16:18", "remaining_time": "1:34:56"}
243
+ {"current_steps": 2390, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1869801401834564e-05, "epoch": 2.03, "percentage": 67.69, "elapsed_time": "3:17:04", "remaining_time": "1:34:04"}
244
+ {"current_steps": 2400, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1681041979858626e-05, "epoch": 2.04, "percentage": 67.97, "elapsed_time": "3:17:46", "remaining_time": "1:33:12"}
245
+ {"current_steps": 2410, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1493336876063071e-05, "epoch": 2.05, "percentage": 68.25, "elapsed_time": "3:18:28", "remaining_time": "1:32:19"}
246
+ {"current_steps": 2420, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1306700949035462e-05, "epoch": 2.06, "percentage": 68.54, "elapsed_time": "3:19:11", "remaining_time": "1:31:26"}
247
+ {"current_steps": 2430, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1121148972728104e-05, "epoch": 2.06, "percentage": 68.82, "elapsed_time": "3:20:00", "remaining_time": "1:30:37"}
248
+ {"current_steps": 2440, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0936695635288674e-05, "epoch": 2.07, "percentage": 69.1, "elapsed_time": "3:20:45", "remaining_time": "1:29:46"}
249
+ {"current_steps": 2450, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0753355537897427e-05, "epoch": 2.08, "percentage": 69.39, "elapsed_time": "3:21:37", "remaining_time": "1:28:57"}
250
+ {"current_steps": 2460, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0571143193611444e-05, "epoch": 2.09, "percentage": 69.67, "elapsed_time": "3:22:27", "remaining_time": "1:28:08"}
251
+ {"current_steps": 2470, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.039007302621576e-05, "epoch": 2.1, "percentage": 69.95, "elapsed_time": "3:23:12", "remaining_time": "1:27:17"}
252
+ {"current_steps": 2480, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0210159369081568e-05, "epoch": 2.11, "percentage": 70.24, "elapsed_time": "3:24:04", "remaining_time": "1:26:29"}
253
+ {"current_steps": 2490, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0031416464031654e-05, "epoch": 2.12, "percentage": 70.52, "elapsed_time": "3:24:52", "remaining_time": "1:25:38"}
254
+ {"current_steps": 2500, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.853858460212962e-06, "epoch": 2.12, "percentage": 70.8, "elapsed_time": "3:25:44", "remaining_time": "1:24:50"}
255
+ {"current_steps": 2500, "total_steps": 3531, "loss": null, "eval_loss": 0.012909023091197014, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.12, "percentage": 70.8, "elapsed_time": "3:25:44", "remaining_time": "1:24:50"}
256
+ {"current_steps": 2510, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.677499412976632e-06, "epoch": 2.13, "percentage": 71.08, "elapsed_time": "3:27:55", "remaining_time": "1:24:34"}
257
+ {"current_steps": 2520, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.502353282765306e-06, "epoch": 2.14, "percentage": 71.37, "elapsed_time": "3:28:45", "remaining_time": "1:23:45"}
258
+ {"current_steps": 2530, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.328433934008107e-06, "epoch": 2.15, "percentage": 71.65, "elapsed_time": "3:29:37", "remaining_time": "1:22:56"}
259
+ {"current_steps": 2540, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.155755134023097e-06, "epoch": 2.16, "percentage": 71.93, "elapsed_time": "3:30:22", "remaining_time": "1:22:04"}
260
+ {"current_steps": 2550, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.984330551927475e-06, "epoch": 2.17, "percentage": 72.22, "elapsed_time": "3:31:15", "remaining_time": "1:21:16"}
261
+ {"current_steps": 2560, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.81417375755556e-06, "epoch": 2.18, "percentage": 72.5, "elapsed_time": "3:32:03", "remaining_time": "1:20:26"}
262
+ {"current_steps": 2570, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.645298220384567e-06, "epoch": 2.18, "percentage": 72.78, "elapsed_time": "3:32:53", "remaining_time": "1:19:36"}
263
+ {"current_steps": 2580, "total_steps": 3531, "loss": 0.0008, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.477717308468442e-06, "epoch": 2.19, "percentage": 73.07, "elapsed_time": "3:33:38", "remaining_time": "1:18:45"}
264
+ {"current_steps": 2590, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.31144428737958e-06, "epoch": 2.2, "percentage": 73.35, "elapsed_time": "3:34:33", "remaining_time": "1:17:57"}
265
+ {"current_steps": 2600, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.146492319158805e-06, "epoch": 2.21, "percentage": 73.63, "elapsed_time": "3:35:24", "remaining_time": "1:17:08"}
266
+ {"current_steps": 2610, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.982874461273438e-06, "epoch": 2.22, "percentage": 73.92, "elapsed_time": "3:36:10", "remaining_time": "1:16:16"}
267
+ {"current_steps": 2620, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.820603665583654e-06, "epoch": 2.23, "percentage": 74.2, "elapsed_time": "3:36:52", "remaining_time": "1:15:24"}
268
+ {"current_steps": 2630, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.659692777317288e-06, "epoch": 2.23, "percentage": 74.48, "elapsed_time": "3:37:41", "remaining_time": "1:14:34"}
269
+ {"current_steps": 2640, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.500154534052933e-06, "epoch": 2.24, "percentage": 74.77, "elapsed_time": "3:38:26", "remaining_time": "1:13:43"}
270
+ {"current_steps": 2650, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.342001564711756e-06, "epoch": 2.25, "percentage": 75.05, "elapsed_time": "3:39:20", "remaining_time": "1:12:55"}
271
+ {"current_steps": 2660, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.185246388557665e-06, "epoch": 2.26, "percentage": 75.33, "elapsed_time": "3:40:10", "remaining_time": "1:12:05"}
272
+ {"current_steps": 2670, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.0299014142064106e-06, "epoch": 2.27, "percentage": 75.62, "elapsed_time": "3:40:57", "remaining_time": "1:11:15"}
273
+ {"current_steps": 2680, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.875978938643277e-06, "epoch": 2.28, "percentage": 75.9, "elapsed_time": "3:41:52", "remaining_time": "1:10:27"}
274
+ {"current_steps": 2690, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.723491146249647e-06, "epoch": 2.29, "percentage": 76.18, "elapsed_time": "3:42:34", "remaining_time": "1:09:35"}
275
+ {"current_steps": 2700, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.572450107838551e-06, "epoch": 2.29, "percentage": 76.47, "elapsed_time": "3:43:23", "remaining_time": "1:08:45"}
276
+ {"current_steps": 2710, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.422867779699088e-06, "epoch": 2.3, "percentage": 76.75, "elapsed_time": "3:44:05", "remaining_time": "1:07:53"}
277
+ {"current_steps": 2720, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.274756002650034e-06, "epoch": 2.31, "percentage": 77.03, "elapsed_time": "3:44:50", "remaining_time": "1:07:02"}
278
+ {"current_steps": 2730, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.128126501102479e-06, "epoch": 2.32, "percentage": 77.32, "elapsed_time": "3:45:42", "remaining_time": "1:06:13"}
279
+ {"current_steps": 2740, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.982990882131775e-06, "epoch": 2.33, "percentage": 77.6, "elapsed_time": "3:46:27", "remaining_time": "1:05:22"}
280
+ {"current_steps": 2750, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.83936063455871e-06, "epoch": 2.34, "percentage": 77.88, "elapsed_time": "3:47:12", "remaining_time": "1:04:31"}
281
+ {"current_steps": 2760, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.697247128040037e-06, "epoch": 2.34, "percentage": 78.16, "elapsed_time": "3:47:54", "remaining_time": "1:03:39"}
282
+ {"current_steps": 2770, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.556661612168537e-06, "epoch": 2.35, "percentage": 78.45, "elapsed_time": "3:48:41", "remaining_time": "1:02:49"}
283
+ {"current_steps": 2780, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.417615215582408e-06, "epoch": 2.36, "percentage": 78.73, "elapsed_time": "3:49:41", "remaining_time": "1:02:02"}
284
+ {"current_steps": 2790, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.280118945084422e-06, "epoch": 2.37, "percentage": 79.01, "elapsed_time": "3:50:25", "remaining_time": "1:01:12"}
285
+ {"current_steps": 2800, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.144183684770565e-06, "epoch": 2.38, "percentage": 79.3, "elapsed_time": "3:51:18", "remaining_time": "1:00:23"}
286
+ {"current_steps": 2810, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.00982019516851e-06, "epoch": 2.39, "percentage": 79.58, "elapsed_time": "3:52:07", "remaining_time": "0:59:33"}
287
+ {"current_steps": 2820, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.877039112385815e-06, "epoch": 2.4, "percentage": 79.86, "elapsed_time": "3:52:53", "remaining_time": "0:58:43"}
288
+ {"current_steps": 2830, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.74585094726793e-06, "epoch": 2.4, "percentage": 80.15, "elapsed_time": "3:53:40", "remaining_time": "0:57:53"}
289
+ {"current_steps": 2840, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.616266084566243e-06, "epoch": 2.41, "percentage": 80.43, "elapsed_time": "3:54:29", "remaining_time": "0:57:03"}
290
+ {"current_steps": 2850, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.488294782115957e-06, "epoch": 2.42, "percentage": 80.71, "elapsed_time": "3:55:14", "remaining_time": "0:56:12"}
291
+ {"current_steps": 2860, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.361947170024144e-06, "epoch": 2.43, "percentage": 81.0, "elapsed_time": "3:55:58", "remaining_time": "0:55:21"}
292
+ {"current_steps": 2870, "total_steps": 3531, "loss": 0.0007, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2372332498678256e-06, "epoch": 2.44, "percentage": 81.28, "elapsed_time": "3:56:48", "remaining_time": "0:54:32"}
293
+ {"current_steps": 2880, "total_steps": 3531, "loss": 0.0061, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.11416289390226e-06, "epoch": 2.45, "percentage": 81.56, "elapsed_time": "3:57:34", "remaining_time": "0:53:42"}
294
+ {"current_steps": 2890, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.992745844279475e-06, "epoch": 2.46, "percentage": 81.85, "elapsed_time": "3:58:24", "remaining_time": "0:52:52"}
295
+ {"current_steps": 2900, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.872991712277052e-06, "epoch": 2.46, "percentage": 82.13, "elapsed_time": "3:59:17", "remaining_time": "0:52:04"}
296
+ {"current_steps": 2910, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.7549099775373576e-06, "epoch": 2.47, "percentage": 82.41, "elapsed_time": "4:00:03", "remaining_time": "0:51:13"}
297
+ {"current_steps": 2920, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6385099873170875e-06, "epoch": 2.48, "percentage": 82.7, "elapsed_time": "4:00:53", "remaining_time": "0:50:24"}
298
+ {"current_steps": 2930, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.5238009557473946e-06, "epoch": 2.49, "percentage": 82.98, "elapsed_time": "4:01:40", "remaining_time": "0:49:34"}
299
+ {"current_steps": 2940, "total_steps": 3531, "loss": 0.0028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4107919631044732e-06, "epoch": 2.5, "percentage": 83.26, "elapsed_time": "4:02:24", "remaining_time": "0:48:43"}
300
+ {"current_steps": 2950, "total_steps": 3531, "loss": 0.0003, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.299491955090775e-06, "epoch": 2.51, "percentage": 83.55, "elapsed_time": "4:03:11", "remaining_time": "0:47:53"}
301
+ {"current_steps": 2960, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1899097421268924e-06, "epoch": 2.51, "percentage": 83.83, "elapsed_time": "4:03:55", "remaining_time": "0:47:03"}
302
+ {"current_steps": 2970, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.0820539986541054e-06, "epoch": 2.52, "percentage": 84.11, "elapsed_time": "4:04:54", "remaining_time": "0:46:15"}
303
+ {"current_steps": 2980, "total_steps": 3531, "loss": 0.0013, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.97593326244775e-06, "epoch": 2.53, "percentage": 84.4, "elapsed_time": "4:05:45", "remaining_time": "0:45:26"}
304
+ {"current_steps": 2990, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.871555933941353e-06, "epoch": 2.54, "percentage": 84.68, "elapsed_time": "4:06:33", "remaining_time": "0:44:36"}
305
+ {"current_steps": 3000, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7689302755616736e-06, "epoch": 2.55, "percentage": 84.96, "elapsed_time": "4:07:27", "remaining_time": "0:43:47"}
306
+ {"current_steps": 3000, "total_steps": 3531, "loss": null, "eval_loss": 0.014460938051342964, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.55, "percentage": 84.96, "elapsed_time": "4:07:27", "remaining_time": "0:43:47"}
307
+ {"current_steps": 3010, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6680644110746305e-06, "epoch": 2.56, "percentage": 85.24, "elapsed_time": "4:09:41", "remaining_time": "0:43:13"}
308
+ {"current_steps": 3020, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.568966324942268e-06, "epoch": 2.57, "percentage": 85.53, "elapsed_time": "4:10:32", "remaining_time": "0:42:23"}
309
+ {"current_steps": 3030, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4716438616906977e-06, "epoch": 2.57, "percentage": 85.81, "elapsed_time": "4:11:22", "remaining_time": "0:41:33"}
310
+ {"current_steps": 3040, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.376104725289105e-06, "epoch": 2.58, "percentage": 86.09, "elapsed_time": "4:12:05", "remaining_time": "0:40:43"}
311
+ {"current_steps": 3050, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2823564785399596e-06, "epoch": 2.59, "percentage": 86.38, "elapsed_time": "4:13:01", "remaining_time": "0:39:54"}
312
+ {"current_steps": 3060, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1904065424803e-06, "epoch": 2.6, "percentage": 86.66, "elapsed_time": "4:13:47", "remaining_time": "0:39:03"}
313
+ {"current_steps": 3070, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1002621957943308e-06, "epoch": 2.61, "percentage": 86.94, "elapsed_time": "4:14:42", "remaining_time": "0:38:14"}
314
+ {"current_steps": 3080, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.011930574237228e-06, "epoch": 2.62, "percentage": 87.23, "elapsed_time": "4:15:32", "remaining_time": "0:37:25"}
315
+ {"current_steps": 3090, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.925418670070267e-06, "epoch": 2.63, "percentage": 87.51, "elapsed_time": "4:16:16", "remaining_time": "0:36:34"}
316
+ {"current_steps": 3100, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8407333315073466e-06, "epoch": 2.63, "percentage": 87.79, "elapsed_time": "4:17:03", "remaining_time": "0:35:44"}
317
+ {"current_steps": 3110, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7578812621728751e-06, "epoch": 2.64, "percentage": 88.08, "elapsed_time": "4:17:50", "remaining_time": "0:34:54"}
318
+ {"current_steps": 3120, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6768690205711173e-06, "epoch": 2.65, "percentage": 88.36, "elapsed_time": "4:18:35", "remaining_time": "0:34:03"}
319
+ {"current_steps": 3130, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5977030195670289e-06, "epoch": 2.66, "percentage": 88.64, "elapsed_time": "4:19:22", "remaining_time": "0:33:13"}
320
+ {"current_steps": 3140, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5203895258786238e-06, "epoch": 2.67, "percentage": 88.93, "elapsed_time": "4:20:10", "remaining_time": "0:32:23"}
321
+ {"current_steps": 3150, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4449346595809015e-06, "epoch": 2.68, "percentage": 89.21, "elapsed_time": "4:20:53", "remaining_time": "0:31:33"}
322
+ {"current_steps": 3160, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3713443936213822e-06, "epoch": 2.68, "percentage": 89.49, "elapsed_time": "4:21:42", "remaining_time": "0:30:43"}
323
+ {"current_steps": 3170, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.299624553347309e-06, "epoch": 2.69, "percentage": 89.78, "elapsed_time": "4:22:25", "remaining_time": "0:29:53"}
324
+ {"current_steps": 3180, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2297808160444929e-06, "epoch": 2.7, "percentage": 90.06, "elapsed_time": "4:23:19", "remaining_time": "0:29:03"}
325
+ {"current_steps": 3190, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.161818710487933e-06, "epoch": 2.71, "percentage": 90.34, "elapsed_time": "4:24:05", "remaining_time": "0:28:13"}
326
+ {"current_steps": 3200, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.095743616504144e-06, "epoch": 2.72, "percentage": 90.63, "elapsed_time": "4:24:49", "remaining_time": "0:27:23"}
327
+ {"current_steps": 3210, "total_steps": 3531, "loss": 0.0006, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0315607645452836e-06, "epoch": 2.73, "percentage": 90.91, "elapsed_time": "4:25:36", "remaining_time": "0:26:33"}
328
+ {"current_steps": 3220, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.692752352751466e-07, "epoch": 2.74, "percentage": 91.19, "elapsed_time": "4:26:24", "remaining_time": "0:25:43"}
329
+ {"current_steps": 3230, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.088919591669548e-07, "epoch": 2.74, "percentage": 91.48, "elapsed_time": "4:27:12", "remaining_time": "0:24:54"}
330
+ {"current_steps": 3240, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.504157161130788e-07, "epoch": 2.75, "percentage": 91.76, "elapsed_time": "4:27:58", "remaining_time": "0:24:04"}
331
+ {"current_steps": 3250, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.938511350466527e-07, "epoch": 2.76, "percentage": 92.04, "elapsed_time": "4:28:44", "remaining_time": "0:23:14"}
332
+ {"current_steps": 3260, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.39202693575175e-07, "epoch": 2.77, "percentage": 92.33, "elapsed_time": "4:29:27", "remaining_time": "0:22:23"}
333
+ {"current_steps": 3270, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.864747176260289e-07, "epoch": 2.78, "percentage": 92.61, "elapsed_time": "4:30:13", "remaining_time": "0:21:34"}
334
+ {"current_steps": 3280, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.356713811040888e-07, "epoch": 2.79, "percentage": 92.89, "elapsed_time": "4:30:57", "remaining_time": "0:20:44"}
335
+ {"current_steps": 3290, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.867967055612794e-07, "epoch": 2.8, "percentage": 93.17, "elapsed_time": "4:31:45", "remaining_time": "0:19:54"}
336
+ {"current_steps": 3300, "total_steps": 3531, "loss": 0.0002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.398545598782528e-07, "epoch": 2.8, "percentage": 93.46, "elapsed_time": "4:32:27", "remaining_time": "0:19:04"}
337
+ {"current_steps": 3310, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.948486599581276e-07, "epoch": 2.81, "percentage": 93.74, "elapsed_time": "4:33:19", "remaining_time": "0:18:14"}
338
+ {"current_steps": 3320, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.517825684323324e-07, "epoch": 2.82, "percentage": 94.02, "elapsed_time": "4:34:17", "remaining_time": "0:17:25"}
339
+ {"current_steps": 3330, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1065969437860954e-07, "epoch": 2.83, "percentage": 94.31, "elapsed_time": "4:35:05", "remaining_time": "0:16:36"}
340
+ {"current_steps": 3340, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.714832930511336e-07, "epoch": 2.84, "percentage": 94.59, "elapsed_time": "4:35:51", "remaining_time": "0:15:46"}
341
+ {"current_steps": 3350, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.342564656228453e-07, "epoch": 2.85, "percentage": 94.87, "elapsed_time": "4:36:36", "remaining_time": "0:14:56"}
342
+ {"current_steps": 3360, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9898215893995054e-07, "epoch": 2.85, "percentage": 95.16, "elapsed_time": "4:37:31", "remaining_time": "0:14:07"}
343
+ {"current_steps": 3370, "total_steps": 3531, "loss": 0.0052, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6566316528866264e-07, "epoch": 2.86, "percentage": 95.44, "elapsed_time": "4:38:14", "remaining_time": "0:13:17"}
344
+ {"current_steps": 3380, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3430212217415982e-07, "epoch": 2.87, "percentage": 95.72, "elapsed_time": "4:38:59", "remaining_time": "0:12:27"}
345
+ {"current_steps": 3390, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.0490151211180752e-07, "epoch": 2.88, "percentage": 96.01, "elapsed_time": "4:39:52", "remaining_time": "0:11:38"}
346
+ {"current_steps": 3400, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7746366243063806e-07, "epoch": 2.89, "percentage": 96.29, "elapsed_time": "4:40:40", "remaining_time": "0:10:48"}
347
+ {"current_steps": 3410, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5199074508912836e-07, "epoch": 2.9, "percentage": 96.57, "elapsed_time": "4:41:31", "remaining_time": "0:09:59"}
348
+ {"current_steps": 3420, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2848477650325984e-07, "epoch": 2.91, "percentage": 96.86, "elapsed_time": "4:42:20", "remaining_time": "0:09:09"}
349
+ {"current_steps": 3430, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.069476173869155e-07, "epoch": 2.91, "percentage": 97.14, "elapsed_time": "4:43:11", "remaining_time": "0:08:20"}
350
+ {"current_steps": 3440, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.738097260456713e-08, "epoch": 2.92, "percentage": 97.42, "elapsed_time": "4:43:55", "remaining_time": "0:07:30"}
351
+ {"current_steps": 3450, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.978639103634444e-08, "epoch": 2.93, "percentage": 97.71, "elapsed_time": "4:44:49", "remaining_time": "0:06:41"}
352
+ {"current_steps": 3460, "total_steps": 3531, "loss": 0.0004, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.41652654553998e-08, "epoch": 2.94, "percentage": 97.99, "elapsed_time": "4:45:32", "remaining_time": "0:05:51"}
353
+ {"current_steps": 3470, "total_steps": 3531, "loss": 0.0042, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.051883241767973e-08, "epoch": 2.95, "percentage": 98.27, "elapsed_time": "4:46:21", "remaining_time": "0:05:02"}
354
+ {"current_steps": 3480, "total_steps": 3531, "loss": 0.0001, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8848172164025465e-08, "epoch": 2.96, "percentage": 98.56, "elapsed_time": "4:47:10", "remaining_time": "0:04:12"}
355
+ {"current_steps": 3490, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.915420853467187e-08, "epoch": 2.97, "percentage": 98.84, "elapsed_time": "4:47:58", "remaining_time": "0:03:22"}
356
+ {"current_steps": 3500, "total_steps": 3531, "loss": 0.002, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1437708896108733e-08, "epoch": 2.97, "percentage": 99.12, "elapsed_time": "4:48:43", "remaining_time": "0:02:33"}
357
+ {"current_steps": 3500, "total_steps": 3531, "loss": null, "eval_loss": 0.014973307959735394, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 2.97, "percentage": 99.12, "elapsed_time": "4:48:43", "remaining_time": "0:02:33"}
358
+ {"current_steps": 3510, "total_steps": 3531, "loss": 0.0064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.1840990213946074e-09, "epoch": 2.98, "percentage": 99.41, "elapsed_time": "4:50:58", "remaining_time": "0:01:44"}
359
+ {"current_steps": 3520, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2263343925993386e-09, "epoch": 2.99, "percentage": 99.69, "elapsed_time": "4:51:45", "remaining_time": "0:00:54"}
360
+ {"current_steps": 3530, "total_steps": 3531, "loss": 0.0, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4737375172445563e-10, "epoch": 3.0, "percentage": 99.97, "elapsed_time": "4:52:34", "remaining_time": "0:00:04"}
361
+ {"current_steps": 3531, "total_steps": 3531, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "4:52:40", "remaining_time": "0:00:00"}
362
+ {"current_steps": 248, "total_steps": 248, "loss": null, "eval_loss": 0.014986271038651466, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "4:54:08", "remaining_time": "0:00:00"}
LLM-Detector-V1-4w/trainer_state.json ADDED
@@ -0,0 +1,2202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3531,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999919851200522e-05,
14
+ "loss": 9.9461,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9996428002198536e-05,
20
+ "loss": 6.4908,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 4.9992242747551964e-05,
26
+ "loss": 3.708,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4.99857130295276e-05,
32
+ "loss": 0.8908,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 4.997720546222574e-05,
38
+ "loss": 0.2454,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 4.996672071909866e-05,
44
+ "loss": 0.1348,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 4.995425963011034e-05,
50
+ "loss": 0.0487,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 4.993982318167074e-05,
56
+ "loss": 0.0282,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 4.992341251655768e-05,
62
+ "loss": 0.0455,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 4.9905028933826435e-05,
68
+ "loss": 0.0472,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 4.988467388870688e-05,
74
+ "loss": 0.0526,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 4.986234899248826e-05,
80
+ "loss": 0.0679,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 4.983805601239172e-05,
86
+ "loss": 0.0314,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 4.981179687143034e-05,
92
+ "loss": 0.0136,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 4.978357364825695e-05,
98
+ "loss": 0.0409,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 4.975338857699956e-05,
104
+ "loss": 0.0284,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.14,
109
+ "learning_rate": 4.972124404708454e-05,
110
+ "loss": 0.0364,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.15,
115
+ "learning_rate": 4.968714260304743e-05,
116
+ "loss": 0.0147,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 4.965108694433159e-05,
122
+ "loss": 0.0174,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 4.961307992507443e-05,
128
+ "loss": 0.0244,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 4.957312455388152e-05,
134
+ "loss": 0.0387,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 4.953122399358845e-05,
140
+ "loss": 0.0264,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 4.948738156101042e-05,
146
+ "loss": 0.0291,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.2,
151
+ "learning_rate": 4.9441600726679694e-05,
152
+ "loss": 0.0214,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.21,
157
+ "learning_rate": 4.939388511457092e-05,
158
+ "loss": 0.0116,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.22,
163
+ "learning_rate": 4.934423850181419e-05,
164
+ "loss": 0.0191,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 4.9292664818396117e-05,
170
+ "loss": 0.0064,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 4.9239168146848666e-05,
176
+ "loss": 0.0184,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 4.9183752721926036e-05,
182
+ "loss": 0.0026,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.25,
187
+ "learning_rate": 4.912642293026942e-05,
188
+ "loss": 0.0223,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.26,
193
+ "learning_rate": 4.906718331005979e-05,
194
+ "loss": 0.0405,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.27,
199
+ "learning_rate": 4.900603855065861e-05,
200
+ "loss": 0.0461,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.28,
205
+ "learning_rate": 4.894299349223665e-05,
206
+ "loss": 0.0199,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 4.8878053125390875e-05,
212
+ "loss": 0.0193,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 4.881122259074935e-05,
218
+ "loss": 0.004,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 4.874250717856433e-05,
224
+ "loss": 0.0018,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.31,
229
+ "learning_rate": 4.867191232829348e-05,
230
+ "loss": 0.0021,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.32,
235
+ "learning_rate": 4.8599443628169295e-05,
236
+ "loss": 0.018,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.33,
241
+ "learning_rate": 4.8525106814756754e-05,
242
+ "loss": 0.0261,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.34,
247
+ "learning_rate": 4.84489077724992e-05,
248
+ "loss": 0.016,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 4.8370852533252536e-05,
254
+ "loss": 0.0402,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 4.8290947275807755e-05,
260
+ "loss": 0.0038,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 4.8209198325401815e-05,
266
+ "loss": 0.008,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.37,
271
+ "learning_rate": 4.8125612153216976e-05,
272
+ "loss": 0.0296,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.38,
277
+ "learning_rate": 4.804019537586849e-05,
278
+ "loss": 0.0012,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.39,
283
+ "learning_rate": 4.7952954754880886e-05,
284
+ "loss": 0.0142,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.4,
289
+ "learning_rate": 4.7863897196152704e-05,
290
+ "loss": 0.0163,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.41,
295
+ "learning_rate": 4.7773029749409836e-05,
296
+ "loss": 0.0021,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 4.76803596076475e-05,
302
+ "loss": 0.0355,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.42,
307
+ "learning_rate": 4.758589410656078e-05,
308
+ "loss": 0.0199,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.42,
313
+ "eval_loss": 0.010466881096363068,
314
+ "eval_runtime": 88.037,
315
+ "eval_samples_per_second": 22.525,
316
+ "eval_steps_per_second": 2.817,
317
+ "step": 500
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "learning_rate": 4.748964072396403e-05,
322
+ "loss": 0.0341,
323
+ "step": 510
324
+ },
325
+ {
326
+ "epoch": 0.44,
327
+ "learning_rate": 4.7391607079198876e-05,
328
+ "loss": 0.0137,
329
+ "step": 520
330
+ },
331
+ {
332
+ "epoch": 0.45,
333
+ "learning_rate": 4.7291800932531064e-05,
334
+ "loss": 0.0138,
335
+ "step": 530
336
+ },
337
+ {
338
+ "epoch": 0.46,
339
+ "learning_rate": 4.719023018453623e-05,
340
+ "loss": 0.0063,
341
+ "step": 540
342
+ },
343
+ {
344
+ "epoch": 0.47,
345
+ "learning_rate": 4.708690287547441e-05,
346
+ "loss": 0.0376,
347
+ "step": 550
348
+ },
349
+ {
350
+ "epoch": 0.48,
351
+ "learning_rate": 4.698182718465368e-05,
352
+ "loss": 0.006,
353
+ "step": 560
354
+ },
355
+ {
356
+ "epoch": 0.48,
357
+ "learning_rate": 4.687501142978258e-05,
358
+ "loss": 0.0371,
359
+ "step": 570
360
+ },
361
+ {
362
+ "epoch": 0.49,
363
+ "learning_rate": 4.6766464066311765e-05,
364
+ "loss": 0.0322,
365
+ "step": 580
366
+ },
367
+ {
368
+ "epoch": 0.5,
369
+ "learning_rate": 4.665619368676466e-05,
370
+ "loss": 0.0086,
371
+ "step": 590
372
+ },
373
+ {
374
+ "epoch": 0.51,
375
+ "learning_rate": 4.6544209020057285e-05,
376
+ "loss": 0.002,
377
+ "step": 600
378
+ },
379
+ {
380
+ "epoch": 0.52,
381
+ "learning_rate": 4.643051893080725e-05,
382
+ "loss": 0.0147,
383
+ "step": 610
384
+ },
385
+ {
386
+ "epoch": 0.53,
387
+ "learning_rate": 4.631513241863209e-05,
388
+ "loss": 0.0038,
389
+ "step": 620
390
+ },
391
+ {
392
+ "epoch": 0.54,
393
+ "learning_rate": 4.619805861743683e-05,
394
+ "loss": 0.0187,
395
+ "step": 630
396
+ },
397
+ {
398
+ "epoch": 0.54,
399
+ "learning_rate": 4.607930679469096e-05,
400
+ "loss": 0.0063,
401
+ "step": 640
402
+ },
403
+ {
404
+ "epoch": 0.55,
405
+ "learning_rate": 4.595888635069481e-05,
406
+ "loss": 0.0109,
407
+ "step": 650
408
+ },
409
+ {
410
+ "epoch": 0.56,
411
+ "learning_rate": 4.5836806817835475e-05,
412
+ "loss": 0.005,
413
+ "step": 660
414
+ },
415
+ {
416
+ "epoch": 0.57,
417
+ "learning_rate": 4.57130778598322e-05,
418
+ "loss": 0.0167,
419
+ "step": 670
420
+ },
421
+ {
422
+ "epoch": 0.58,
423
+ "learning_rate": 4.5587709270971425e-05,
424
+ "loss": 0.0143,
425
+ "step": 680
426
+ },
427
+ {
428
+ "epoch": 0.59,
429
+ "learning_rate": 4.546071097533145e-05,
430
+ "loss": 0.0015,
431
+ "step": 690
432
+ },
433
+ {
434
+ "epoch": 0.59,
435
+ "learning_rate": 4.533209302599691e-05,
436
+ "loss": 0.0003,
437
+ "step": 700
438
+ },
439
+ {
440
+ "epoch": 0.6,
441
+ "learning_rate": 4.520186560426292e-05,
442
+ "loss": 0.006,
443
+ "step": 710
444
+ },
445
+ {
446
+ "epoch": 0.61,
447
+ "learning_rate": 4.507003901882915e-05,
448
+ "loss": 0.0093,
449
+ "step": 720
450
+ },
451
+ {
452
+ "epoch": 0.62,
453
+ "learning_rate": 4.493662370498383e-05,
454
+ "loss": 0.0046,
455
+ "step": 730
456
+ },
457
+ {
458
+ "epoch": 0.63,
459
+ "learning_rate": 4.4801630223777665e-05,
460
+ "loss": 0.0147,
461
+ "step": 740
462
+ },
463
+ {
464
+ "epoch": 0.64,
465
+ "learning_rate": 4.466506926118782e-05,
466
+ "loss": 0.0102,
467
+ "step": 750
468
+ },
469
+ {
470
+ "epoch": 0.65,
471
+ "learning_rate": 4.4526951627272074e-05,
472
+ "loss": 0.017,
473
+ "step": 760
474
+ },
475
+ {
476
+ "epoch": 0.65,
477
+ "learning_rate": 4.438728825531305e-05,
478
+ "loss": 0.0033,
479
+ "step": 770
480
+ },
481
+ {
482
+ "epoch": 0.66,
483
+ "learning_rate": 4.4246090200952816e-05,
484
+ "loss": 0.0061,
485
+ "step": 780
486
+ },
487
+ {
488
+ "epoch": 0.67,
489
+ "learning_rate": 4.410336864131762e-05,
490
+ "loss": 0.0032,
491
+ "step": 790
492
+ },
493
+ {
494
+ "epoch": 0.68,
495
+ "learning_rate": 4.395913487413324e-05,
496
+ "loss": 0.0043,
497
+ "step": 800
498
+ },
499
+ {
500
+ "epoch": 0.69,
501
+ "learning_rate": 4.3813400316830576e-05,
502
+ "loss": 0.0063,
503
+ "step": 810
504
+ },
505
+ {
506
+ "epoch": 0.7,
507
+ "learning_rate": 4.36661765056419e-05,
508
+ "loss": 0.0273,
509
+ "step": 820
510
+ },
511
+ {
512
+ "epoch": 0.71,
513
+ "learning_rate": 4.351747509468763e-05,
514
+ "loss": 0.0125,
515
+ "step": 830
516
+ },
517
+ {
518
+ "epoch": 0.71,
519
+ "learning_rate": 4.336730785505382e-05,
520
+ "loss": 0.0076,
521
+ "step": 840
522
+ },
523
+ {
524
+ "epoch": 0.72,
525
+ "learning_rate": 4.3215686673860384e-05,
526
+ "loss": 0.0127,
527
+ "step": 850
528
+ },
529
+ {
530
+ "epoch": 0.73,
531
+ "learning_rate": 4.306262355332006e-05,
532
+ "loss": 0.0161,
533
+ "step": 860
534
+ },
535
+ {
536
+ "epoch": 0.74,
537
+ "learning_rate": 4.290813060978839e-05,
538
+ "loss": 0.0169,
539
+ "step": 870
540
+ },
541
+ {
542
+ "epoch": 0.75,
543
+ "learning_rate": 4.2752220072804564e-05,
544
+ "loss": 0.0081,
545
+ "step": 880
546
+ },
547
+ {
548
+ "epoch": 0.76,
549
+ "learning_rate": 4.259490428412335e-05,
550
+ "loss": 0.0131,
551
+ "step": 890
552
+ },
553
+ {
554
+ "epoch": 0.76,
555
+ "learning_rate": 4.243619569673814e-05,
556
+ "loss": 0.0205,
557
+ "step": 900
558
+ },
559
+ {
560
+ "epoch": 0.77,
561
+ "learning_rate": 4.2276106873895143e-05,
562
+ "loss": 0.0026,
563
+ "step": 910
564
+ },
565
+ {
566
+ "epoch": 0.78,
567
+ "learning_rate": 4.2114650488098936e-05,
568
+ "loss": 0.018,
569
+ "step": 920
570
+ },
571
+ {
572
+ "epoch": 0.79,
573
+ "learning_rate": 4.19518393201093e-05,
574
+ "loss": 0.0083,
575
+ "step": 930
576
+ },
577
+ {
578
+ "epoch": 0.8,
579
+ "learning_rate": 4.178768625792949e-05,
580
+ "loss": 0.0291,
581
+ "step": 940
582
+ },
583
+ {
584
+ "epoch": 0.81,
585
+ "learning_rate": 4.162220429578605e-05,
586
+ "loss": 0.0226,
587
+ "step": 950
588
+ },
589
+ {
590
+ "epoch": 0.82,
591
+ "learning_rate": 4.145540653310018e-05,
592
+ "loss": 0.0042,
593
+ "step": 960
594
+ },
595
+ {
596
+ "epoch": 0.82,
597
+ "learning_rate": 4.128730617345084e-05,
598
+ "loss": 0.0078,
599
+ "step": 970
600
+ },
601
+ {
602
+ "epoch": 0.83,
603
+ "learning_rate": 4.111791652352952e-05,
604
+ "loss": 0.0084,
605
+ "step": 980
606
+ },
607
+ {
608
+ "epoch": 0.84,
609
+ "learning_rate": 4.094725099208688e-05,
610
+ "loss": 0.0044,
611
+ "step": 990
612
+ },
613
+ {
614
+ "epoch": 0.85,
615
+ "learning_rate": 4.077532308887141e-05,
616
+ "loss": 0.0011,
617
+ "step": 1000
618
+ },
619
+ {
620
+ "epoch": 0.85,
621
+ "eval_loss": 0.01175768580287695,
622
+ "eval_runtime": 88.0904,
623
+ "eval_samples_per_second": 22.511,
624
+ "eval_steps_per_second": 2.815,
625
+ "step": 1000
626
+ },
627
+ {
628
+ "epoch": 0.86,
629
+ "learning_rate": 4.060214642355989e-05,
630
+ "loss": 0.0011,
631
+ "step": 1010
632
+ },
633
+ {
634
+ "epoch": 0.87,
635
+ "learning_rate": 4.042773470468016e-05,
636
+ "loss": 0.021,
637
+ "step": 1020
638
+ },
639
+ {
640
+ "epoch": 0.88,
641
+ "learning_rate": 4.0252101738525916e-05,
642
+ "loss": 0.0424,
643
+ "step": 1030
644
+ },
645
+ {
646
+ "epoch": 0.88,
647
+ "learning_rate": 4.0075261428063806e-05,
648
+ "loss": 0.0194,
649
+ "step": 1040
650
+ },
651
+ {
652
+ "epoch": 0.89,
653
+ "learning_rate": 3.9897227771832924e-05,
654
+ "loss": 0.0025,
655
+ "step": 1050
656
+ },
657
+ {
658
+ "epoch": 0.9,
659
+ "learning_rate": 3.971801486283665e-05,
660
+ "loss": 0.0044,
661
+ "step": 1060
662
+ },
663
+ {
664
+ "epoch": 0.91,
665
+ "learning_rate": 3.953763688742708e-05,
666
+ "loss": 0.0051,
667
+ "step": 1070
668
+ },
669
+ {
670
+ "epoch": 0.92,
671
+ "learning_rate": 3.9356108124182067e-05,
672
+ "loss": 0.0071,
673
+ "step": 1080
674
+ },
675
+ {
676
+ "epoch": 0.93,
677
+ "learning_rate": 3.9173442942774885e-05,
678
+ "loss": 0.0145,
679
+ "step": 1090
680
+ },
681
+ {
682
+ "epoch": 0.93,
683
+ "learning_rate": 3.898965580283681e-05,
684
+ "loss": 0.0371,
685
+ "step": 1100
686
+ },
687
+ {
688
+ "epoch": 0.94,
689
+ "learning_rate": 3.880476125281244e-05,
690
+ "loss": 0.0076,
691
+ "step": 1110
692
+ },
693
+ {
694
+ "epoch": 0.95,
695
+ "learning_rate": 3.861877392880808e-05,
696
+ "loss": 0.0035,
697
+ "step": 1120
698
+ },
699
+ {
700
+ "epoch": 0.96,
701
+ "learning_rate": 3.843170855343317e-05,
702
+ "loss": 0.008,
703
+ "step": 1130
704
+ },
705
+ {
706
+ "epoch": 0.97,
707
+ "learning_rate": 3.8243579934634846e-05,
708
+ "loss": 0.0089,
709
+ "step": 1140
710
+ },
711
+ {
712
+ "epoch": 0.98,
713
+ "learning_rate": 3.805440296452574e-05,
714
+ "loss": 0.0034,
715
+ "step": 1150
716
+ },
717
+ {
718
+ "epoch": 0.99,
719
+ "learning_rate": 3.786419261820514e-05,
720
+ "loss": 0.0019,
721
+ "step": 1160
722
+ },
723
+ {
724
+ "epoch": 0.99,
725
+ "learning_rate": 3.7672963952573614e-05,
726
+ "loss": 0.0164,
727
+ "step": 1170
728
+ },
729
+ {
730
+ "epoch": 1.0,
731
+ "learning_rate": 3.748073210514102e-05,
732
+ "loss": 0.0012,
733
+ "step": 1180
734
+ },
735
+ {
736
+ "epoch": 1.01,
737
+ "learning_rate": 3.728751229282836e-05,
738
+ "loss": 0.0072,
739
+ "step": 1190
740
+ },
741
+ {
742
+ "epoch": 1.02,
743
+ "learning_rate": 3.70933198107631e-05,
744
+ "loss": 0.0041,
745
+ "step": 1200
746
+ },
747
+ {
748
+ "epoch": 1.03,
749
+ "learning_rate": 3.689817003106852e-05,
750
+ "loss": 0.0021,
751
+ "step": 1210
752
+ },
753
+ {
754
+ "epoch": 1.04,
755
+ "learning_rate": 3.670207840164678e-05,
756
+ "loss": 0.0024,
757
+ "step": 1220
758
+ },
759
+ {
760
+ "epoch": 1.05,
761
+ "learning_rate": 3.650506044495615e-05,
762
+ "loss": 0.0026,
763
+ "step": 1230
764
+ },
765
+ {
766
+ "epoch": 1.05,
767
+ "learning_rate": 3.630713175678222e-05,
768
+ "loss": 0.005,
769
+ "step": 1240
770
+ },
771
+ {
772
+ "epoch": 1.06,
773
+ "learning_rate": 3.610830800500335e-05,
774
+ "loss": 0.0069,
775
+ "step": 1250
776
+ },
777
+ {
778
+ "epoch": 1.07,
779
+ "learning_rate": 3.590860492835046e-05,
780
+ "loss": 0.0081,
781
+ "step": 1260
782
+ },
783
+ {
784
+ "epoch": 1.08,
785
+ "learning_rate": 3.5708038335161134e-05,
786
+ "loss": 0.0107,
787
+ "step": 1270
788
+ },
789
+ {
790
+ "epoch": 1.09,
791
+ "learning_rate": 3.550662410212819e-05,
792
+ "loss": 0.0074,
793
+ "step": 1280
794
+ },
795
+ {
796
+ "epoch": 1.1,
797
+ "learning_rate": 3.5304378173043e-05,
798
+ "loss": 0.0048,
799
+ "step": 1290
800
+ },
801
+ {
802
+ "epoch": 1.1,
803
+ "learning_rate": 3.5101316557533294e-05,
804
+ "loss": 0.0006,
805
+ "step": 1300
806
+ },
807
+ {
808
+ "epoch": 1.11,
809
+ "learning_rate": 3.489745532979593e-05,
810
+ "loss": 0.0076,
811
+ "step": 1310
812
+ },
813
+ {
814
+ "epoch": 1.12,
815
+ "learning_rate": 3.469281062732442e-05,
816
+ "loss": 0.0002,
817
+ "step": 1320
818
+ },
819
+ {
820
+ "epoch": 1.13,
821
+ "learning_rate": 3.448739864963154e-05,
822
+ "loss": 0.0073,
823
+ "step": 1330
824
+ },
825
+ {
826
+ "epoch": 1.14,
827
+ "learning_rate": 3.4281235656966915e-05,
828
+ "loss": 0.0008,
829
+ "step": 1340
830
+ },
831
+ {
832
+ "epoch": 1.15,
833
+ "learning_rate": 3.4074337969029965e-05,
834
+ "loss": 0.001,
835
+ "step": 1350
836
+ },
837
+ {
838
+ "epoch": 1.16,
839
+ "learning_rate": 3.386672196367799e-05,
840
+ "loss": 0.0047,
841
+ "step": 1360
842
+ },
843
+ {
844
+ "epoch": 1.16,
845
+ "learning_rate": 3.365840407562974e-05,
846
+ "loss": 0.0131,
847
+ "step": 1370
848
+ },
849
+ {
850
+ "epoch": 1.17,
851
+ "learning_rate": 3.3449400795164416e-05,
852
+ "loss": 0.001,
853
+ "step": 1380
854
+ },
855
+ {
856
+ "epoch": 1.18,
857
+ "learning_rate": 3.323972866681637e-05,
858
+ "loss": 0.0058,
859
+ "step": 1390
860
+ },
861
+ {
862
+ "epoch": 1.19,
863
+ "learning_rate": 3.3029404288065426e-05,
864
+ "loss": 0.0047,
865
+ "step": 1400
866
+ },
867
+ {
868
+ "epoch": 1.2,
869
+ "learning_rate": 3.2818444308023e-05,
870
+ "loss": 0.0029,
871
+ "step": 1410
872
+ },
873
+ {
874
+ "epoch": 1.21,
875
+ "learning_rate": 3.2606865426114234e-05,
876
+ "loss": 0.0073,
877
+ "step": 1420
878
+ },
879
+ {
880
+ "epoch": 1.21,
881
+ "learning_rate": 3.239468439075604e-05,
882
+ "loss": 0.0006,
883
+ "step": 1430
884
+ },
885
+ {
886
+ "epoch": 1.22,
887
+ "learning_rate": 3.2181917998031326e-05,
888
+ "loss": 0.0028,
889
+ "step": 1440
890
+ },
891
+ {
892
+ "epoch": 1.23,
893
+ "learning_rate": 3.196858309035941e-05,
894
+ "loss": 0.0003,
895
+ "step": 1450
896
+ },
897
+ {
898
+ "epoch": 1.24,
899
+ "learning_rate": 3.175469655516284e-05,
900
+ "loss": 0.0007,
901
+ "step": 1460
902
+ },
903
+ {
904
+ "epoch": 1.25,
905
+ "learning_rate": 3.154027532353052e-05,
906
+ "loss": 0.0037,
907
+ "step": 1470
908
+ },
909
+ {
910
+ "epoch": 1.26,
911
+ "learning_rate": 3.132533636887753e-05,
912
+ "loss": 0.0065,
913
+ "step": 1480
914
+ },
915
+ {
916
+ "epoch": 1.27,
917
+ "learning_rate": 3.1109896705601485e-05,
918
+ "loss": 0.0092,
919
+ "step": 1490
920
+ },
921
+ {
922
+ "epoch": 1.27,
923
+ "learning_rate": 3.0893973387735687e-05,
924
+ "loss": 0.0001,
925
+ "step": 1500
926
+ },
927
+ {
928
+ "epoch": 1.27,
929
+ "eval_loss": 0.010954583063721657,
930
+ "eval_runtime": 88.0029,
931
+ "eval_samples_per_second": 22.533,
932
+ "eval_steps_per_second": 2.818,
933
+ "step": 1500
934
+ },
935
+ {
936
+ "epoch": 1.28,
937
+ "learning_rate": 3.067758350759917e-05,
938
+ "loss": 0.0002,
939
+ "step": 1510
940
+ },
941
+ {
942
+ "epoch": 1.29,
943
+ "learning_rate": 3.046074419444366e-05,
944
+ "loss": 0.0004,
945
+ "step": 1520
946
+ },
947
+ {
948
+ "epoch": 1.3,
949
+ "learning_rate": 3.0243472613097656e-05,
950
+ "loss": 0.001,
951
+ "step": 1530
952
+ },
953
+ {
954
+ "epoch": 1.31,
955
+ "learning_rate": 3.002578596260765e-05,
956
+ "loss": 0.0001,
957
+ "step": 1540
958
+ },
959
+ {
960
+ "epoch": 1.32,
961
+ "learning_rate": 2.980770147487668e-05,
962
+ "loss": 0.0086,
963
+ "step": 1550
964
+ },
965
+ {
966
+ "epoch": 1.33,
967
+ "learning_rate": 2.958923641330028e-05,
968
+ "loss": 0.0021,
969
+ "step": 1560
970
+ },
971
+ {
972
+ "epoch": 1.33,
973
+ "learning_rate": 2.9370408071399898e-05,
974
+ "loss": 0.0001,
975
+ "step": 1570
976
+ },
977
+ {
978
+ "epoch": 1.34,
979
+ "learning_rate": 2.9151233771453956e-05,
980
+ "loss": 0.0076,
981
+ "step": 1580
982
+ },
983
+ {
984
+ "epoch": 1.35,
985
+ "learning_rate": 2.8931730863126666e-05,
986
+ "loss": 0.0001,
987
+ "step": 1590
988
+ },
989
+ {
990
+ "epoch": 1.36,
991
+ "learning_rate": 2.871191672209459e-05,
992
+ "loss": 0.0001,
993
+ "step": 1600
994
+ },
995
+ {
996
+ "epoch": 1.37,
997
+ "learning_rate": 2.8491808748671255e-05,
998
+ "loss": 0.0001,
999
+ "step": 1610
1000
+ },
1001
+ {
1002
+ "epoch": 1.38,
1003
+ "learning_rate": 2.8271424366429706e-05,
1004
+ "loss": 0.0115,
1005
+ "step": 1620
1006
+ },
1007
+ {
1008
+ "epoch": 1.38,
1009
+ "learning_rate": 2.8050781020823296e-05,
1010
+ "loss": 0.0001,
1011
+ "step": 1630
1012
+ },
1013
+ {
1014
+ "epoch": 1.39,
1015
+ "learning_rate": 2.7829896177804716e-05,
1016
+ "loss": 0.0003,
1017
+ "step": 1640
1018
+ },
1019
+ {
1020
+ "epoch": 1.4,
1021
+ "learning_rate": 2.760878732244339e-05,
1022
+ "loss": 0.0003,
1023
+ "step": 1650
1024
+ },
1025
+ {
1026
+ "epoch": 1.41,
1027
+ "learning_rate": 2.7387471957541405e-05,
1028
+ "loss": 0.0024,
1029
+ "step": 1660
1030
+ },
1031
+ {
1032
+ "epoch": 1.42,
1033
+ "learning_rate": 2.7165967602247964e-05,
1034
+ "loss": 0.0005,
1035
+ "step": 1670
1036
+ },
1037
+ {
1038
+ "epoch": 1.43,
1039
+ "learning_rate": 2.694429179067261e-05,
1040
+ "loss": 0.0018,
1041
+ "step": 1680
1042
+ },
1043
+ {
1044
+ "epoch": 1.44,
1045
+ "learning_rate": 2.6744651468034758e-05,
1046
+ "loss": 0.002,
1047
+ "step": 1690
1048
+ },
1049
+ {
1050
+ "epoch": 1.44,
1051
+ "learning_rate": 2.6522698243485527e-05,
1052
+ "loss": 0.0001,
1053
+ "step": 1700
1054
+ },
1055
+ {
1056
+ "epoch": 1.45,
1057
+ "learning_rate": 2.6300624483347926e-05,
1058
+ "loss": 0.0058,
1059
+ "step": 1710
1060
+ },
1061
+ {
1062
+ "epoch": 1.46,
1063
+ "learning_rate": 2.607844776680513e-05,
1064
+ "loss": 0.0001,
1065
+ "step": 1720
1066
+ },
1067
+ {
1068
+ "epoch": 1.47,
1069
+ "learning_rate": 2.585618568119027e-05,
1070
+ "loss": 0.0001,
1071
+ "step": 1730
1072
+ },
1073
+ {
1074
+ "epoch": 1.48,
1075
+ "learning_rate": 2.56338558205942e-05,
1076
+ "loss": 0.0008,
1077
+ "step": 1740
1078
+ },
1079
+ {
1080
+ "epoch": 1.49,
1081
+ "learning_rate": 2.5411475784472805e-05,
1082
+ "loss": 0.0002,
1083
+ "step": 1750
1084
+ },
1085
+ {
1086
+ "epoch": 1.5,
1087
+ "learning_rate": 2.5189063176253825e-05,
1088
+ "loss": 0.0001,
1089
+ "step": 1760
1090
+ },
1091
+ {
1092
+ "epoch": 1.5,
1093
+ "learning_rate": 2.496663560194338e-05,
1094
+ "loss": 0.0001,
1095
+ "step": 1770
1096
+ },
1097
+ {
1098
+ "epoch": 1.51,
1099
+ "learning_rate": 2.4744210668732295e-05,
1100
+ "loss": 0.0001,
1101
+ "step": 1780
1102
+ },
1103
+ {
1104
+ "epoch": 1.52,
1105
+ "learning_rate": 2.452180598360232e-05,
1106
+ "loss": 0.0001,
1107
+ "step": 1790
1108
+ },
1109
+ {
1110
+ "epoch": 1.53,
1111
+ "learning_rate": 2.429943915193239e-05,
1112
+ "loss": 0.0,
1113
+ "step": 1800
1114
+ },
1115
+ {
1116
+ "epoch": 1.54,
1117
+ "learning_rate": 2.4077127776104984e-05,
1118
+ "loss": 0.0146,
1119
+ "step": 1810
1120
+ },
1121
+ {
1122
+ "epoch": 1.55,
1123
+ "learning_rate": 2.3854889454112748e-05,
1124
+ "loss": 0.0017,
1125
+ "step": 1820
1126
+ },
1127
+ {
1128
+ "epoch": 1.55,
1129
+ "learning_rate": 2.3632741778165442e-05,
1130
+ "loss": 0.0001,
1131
+ "step": 1830
1132
+ },
1133
+ {
1134
+ "epoch": 1.56,
1135
+ "learning_rate": 2.3410702333297356e-05,
1136
+ "loss": 0.0001,
1137
+ "step": 1840
1138
+ },
1139
+ {
1140
+ "epoch": 1.57,
1141
+ "learning_rate": 2.318878869597528e-05,
1142
+ "loss": 0.0001,
1143
+ "step": 1850
1144
+ },
1145
+ {
1146
+ "epoch": 1.58,
1147
+ "learning_rate": 2.2967018432707213e-05,
1148
+ "loss": 0.0073,
1149
+ "step": 1860
1150
+ },
1151
+ {
1152
+ "epoch": 1.59,
1153
+ "learning_rate": 2.2745409098651744e-05,
1154
+ "loss": 0.0001,
1155
+ "step": 1870
1156
+ },
1157
+ {
1158
+ "epoch": 1.6,
1159
+ "learning_rate": 2.2523978236228442e-05,
1160
+ "loss": 0.0001,
1161
+ "step": 1880
1162
+ },
1163
+ {
1164
+ "epoch": 1.61,
1165
+ "learning_rate": 2.2302743373729205e-05,
1166
+ "loss": 0.0,
1167
+ "step": 1890
1168
+ },
1169
+ {
1170
+ "epoch": 1.61,
1171
+ "learning_rate": 2.2081722023930743e-05,
1172
+ "loss": 0.0136,
1173
+ "step": 1900
1174
+ },
1175
+ {
1176
+ "epoch": 1.62,
1177
+ "learning_rate": 2.1860931682708248e-05,
1178
+ "loss": 0.0051,
1179
+ "step": 1910
1180
+ },
1181
+ {
1182
+ "epoch": 1.63,
1183
+ "learning_rate": 2.164038982765047e-05,
1184
+ "loss": 0.0004,
1185
+ "step": 1920
1186
+ },
1187
+ {
1188
+ "epoch": 1.64,
1189
+ "learning_rate": 2.1420113916676183e-05,
1190
+ "loss": 0.0002,
1191
+ "step": 1930
1192
+ },
1193
+ {
1194
+ "epoch": 1.65,
1195
+ "learning_rate": 2.1200121386652246e-05,
1196
+ "loss": 0.0001,
1197
+ "step": 1940
1198
+ },
1199
+ {
1200
+ "epoch": 1.66,
1201
+ "learning_rate": 2.0980429652013297e-05,
1202
+ "loss": 0.0001,
1203
+ "step": 1950
1204
+ },
1205
+ {
1206
+ "epoch": 1.67,
1207
+ "learning_rate": 2.0761056103383258e-05,
1208
+ "loss": 0.0001,
1209
+ "step": 1960
1210
+ },
1211
+ {
1212
+ "epoch": 1.67,
1213
+ "learning_rate": 2.0542018106198697e-05,
1214
+ "loss": 0.0,
1215
+ "step": 1970
1216
+ },
1217
+ {
1218
+ "epoch": 1.68,
1219
+ "learning_rate": 2.0323332999334198e-05,
1220
+ "loss": 0.005,
1221
+ "step": 1980
1222
+ },
1223
+ {
1224
+ "epoch": 1.69,
1225
+ "learning_rate": 2.010501809372981e-05,
1226
+ "loss": 0.0149,
1227
+ "step": 1990
1228
+ },
1229
+ {
1230
+ "epoch": 1.7,
1231
+ "learning_rate": 1.988709067102076e-05,
1232
+ "loss": 0.0143,
1233
+ "step": 2000
1234
+ },
1235
+ {
1236
+ "epoch": 1.7,
1237
+ "eval_loss": 0.013543435372412205,
1238
+ "eval_runtime": 87.9904,
1239
+ "eval_samples_per_second": 22.537,
1240
+ "eval_steps_per_second": 2.818,
1241
+ "step": 2000
1242
+ },
1243
+ {
1244
+ "epoch": 1.71,
1245
+ "learning_rate": 1.966956798216943e-05,
1246
+ "loss": 0.0017,
1247
+ "step": 2010
1248
+ },
1249
+ {
1250
+ "epoch": 1.72,
1251
+ "learning_rate": 1.945246724609978e-05,
1252
+ "loss": 0.0038,
1253
+ "step": 2020
1254
+ },
1255
+ {
1256
+ "epoch": 1.72,
1257
+ "learning_rate": 1.9235805648334342e-05,
1258
+ "loss": 0.0003,
1259
+ "step": 2030
1260
+ },
1261
+ {
1262
+ "epoch": 1.73,
1263
+ "learning_rate": 1.9019600339633798e-05,
1264
+ "loss": 0.0005,
1265
+ "step": 2040
1266
+ },
1267
+ {
1268
+ "epoch": 1.74,
1269
+ "learning_rate": 1.8803868434639345e-05,
1270
+ "loss": 0.0005,
1271
+ "step": 2050
1272
+ },
1273
+ {
1274
+ "epoch": 1.75,
1275
+ "learning_rate": 1.858862701051791e-05,
1276
+ "loss": 0.0009,
1277
+ "step": 2060
1278
+ },
1279
+ {
1280
+ "epoch": 1.76,
1281
+ "learning_rate": 1.8373893105610356e-05,
1282
+ "loss": 0.0002,
1283
+ "step": 2070
1284
+ },
1285
+ {
1286
+ "epoch": 1.77,
1287
+ "learning_rate": 1.815968371808273e-05,
1288
+ "loss": 0.0036,
1289
+ "step": 2080
1290
+ },
1291
+ {
1292
+ "epoch": 1.78,
1293
+ "learning_rate": 1.7946015804580688e-05,
1294
+ "loss": 0.0138,
1295
+ "step": 2090
1296
+ },
1297
+ {
1298
+ "epoch": 1.78,
1299
+ "learning_rate": 1.7732906278887225e-05,
1300
+ "loss": 0.0005,
1301
+ "step": 2100
1302
+ },
1303
+ {
1304
+ "epoch": 1.79,
1305
+ "learning_rate": 1.7520372010583815e-05,
1306
+ "loss": 0.0001,
1307
+ "step": 2110
1308
+ },
1309
+ {
1310
+ "epoch": 1.8,
1311
+ "learning_rate": 1.7308429823714995e-05,
1312
+ "loss": 0.0001,
1313
+ "step": 2120
1314
+ },
1315
+ {
1316
+ "epoch": 1.81,
1317
+ "learning_rate": 1.709709649545662e-05,
1318
+ "loss": 0.0001,
1319
+ "step": 2130
1320
+ },
1321
+ {
1322
+ "epoch": 1.82,
1323
+ "learning_rate": 1.688638875478777e-05,
1324
+ "loss": 0.0001,
1325
+ "step": 2140
1326
+ },
1327
+ {
1328
+ "epoch": 1.83,
1329
+ "learning_rate": 1.66763232811665e-05,
1330
+ "loss": 0.0,
1331
+ "step": 2150
1332
+ },
1333
+ {
1334
+ "epoch": 1.84,
1335
+ "learning_rate": 1.6466916703209535e-05,
1336
+ "loss": 0.012,
1337
+ "step": 2160
1338
+ },
1339
+ {
1340
+ "epoch": 1.84,
1341
+ "learning_rate": 1.625818559737592e-05,
1342
+ "loss": 0.0,
1343
+ "step": 2170
1344
+ },
1345
+ {
1346
+ "epoch": 1.85,
1347
+ "learning_rate": 1.605014648665486e-05,
1348
+ "loss": 0.0005,
1349
+ "step": 2180
1350
+ },
1351
+ {
1352
+ "epoch": 1.86,
1353
+ "learning_rate": 1.584281583925779e-05,
1354
+ "loss": 0.0047,
1355
+ "step": 2190
1356
+ },
1357
+ {
1358
+ "epoch": 1.87,
1359
+ "learning_rate": 1.5636210067314744e-05,
1360
+ "loss": 0.0126,
1361
+ "step": 2200
1362
+ },
1363
+ {
1364
+ "epoch": 1.88,
1365
+ "learning_rate": 1.5430345525575186e-05,
1366
+ "loss": 0.0015,
1367
+ "step": 2210
1368
+ },
1369
+ {
1370
+ "epoch": 1.89,
1371
+ "learning_rate": 1.5225238510113377e-05,
1372
+ "loss": 0.0018,
1373
+ "step": 2220
1374
+ },
1375
+ {
1376
+ "epoch": 1.89,
1377
+ "learning_rate": 1.5020905257038403e-05,
1378
+ "loss": 0.0057,
1379
+ "step": 2230
1380
+ },
1381
+ {
1382
+ "epoch": 1.9,
1383
+ "learning_rate": 1.481736194120894e-05,
1384
+ "loss": 0.0036,
1385
+ "step": 2240
1386
+ },
1387
+ {
1388
+ "epoch": 1.91,
1389
+ "learning_rate": 1.4614624674952842e-05,
1390
+ "loss": 0.0006,
1391
+ "step": 2250
1392
+ },
1393
+ {
1394
+ "epoch": 1.92,
1395
+ "learning_rate": 1.4412709506791725e-05,
1396
+ "loss": 0.0054,
1397
+ "step": 2260
1398
+ },
1399
+ {
1400
+ "epoch": 1.93,
1401
+ "learning_rate": 1.4211632420170558e-05,
1402
+ "loss": 0.0039,
1403
+ "step": 2270
1404
+ },
1405
+ {
1406
+ "epoch": 1.94,
1407
+ "learning_rate": 1.4011409332192472e-05,
1408
+ "loss": 0.0017,
1409
+ "step": 2280
1410
+ },
1411
+ {
1412
+ "epoch": 1.95,
1413
+ "learning_rate": 1.3812056092358686e-05,
1414
+ "loss": 0.0181,
1415
+ "step": 2290
1416
+ },
1417
+ {
1418
+ "epoch": 1.95,
1419
+ "learning_rate": 1.3613588481313977e-05,
1420
+ "loss": 0.0035,
1421
+ "step": 2300
1422
+ },
1423
+ {
1424
+ "epoch": 1.96,
1425
+ "learning_rate": 1.3416022209597429e-05,
1426
+ "loss": 0.0001,
1427
+ "step": 2310
1428
+ },
1429
+ {
1430
+ "epoch": 1.97,
1431
+ "learning_rate": 1.3219372916398826e-05,
1432
+ "loss": 0.0005,
1433
+ "step": 2320
1434
+ },
1435
+ {
1436
+ "epoch": 1.98,
1437
+ "learning_rate": 1.302365616832063e-05,
1438
+ "loss": 0.0012,
1439
+ "step": 2330
1440
+ },
1441
+ {
1442
+ "epoch": 1.99,
1443
+ "learning_rate": 1.2828887458145806e-05,
1444
+ "loss": 0.0052,
1445
+ "step": 2340
1446
+ },
1447
+ {
1448
+ "epoch": 2.0,
1449
+ "learning_rate": 1.2635082203611375e-05,
1450
+ "loss": 0.0008,
1451
+ "step": 2350
1452
+ },
1453
+ {
1454
+ "epoch": 2.01,
1455
+ "learning_rate": 1.2442255746187954e-05,
1456
+ "loss": 0.0002,
1457
+ "step": 2360
1458
+ },
1459
+ {
1460
+ "epoch": 2.01,
1461
+ "learning_rate": 1.2250423349865387e-05,
1462
+ "loss": 0.0009,
1463
+ "step": 2370
1464
+ },
1465
+ {
1466
+ "epoch": 2.02,
1467
+ "learning_rate": 1.2059600199944388e-05,
1468
+ "loss": 0.0002,
1469
+ "step": 2380
1470
+ },
1471
+ {
1472
+ "epoch": 2.03,
1473
+ "learning_rate": 1.1869801401834564e-05,
1474
+ "loss": 0.0001,
1475
+ "step": 2390
1476
+ },
1477
+ {
1478
+ "epoch": 2.04,
1479
+ "learning_rate": 1.1681041979858626e-05,
1480
+ "loss": 0.0001,
1481
+ "step": 2400
1482
+ },
1483
+ {
1484
+ "epoch": 2.05,
1485
+ "learning_rate": 1.1493336876063071e-05,
1486
+ "loss": 0.0001,
1487
+ "step": 2410
1488
+ },
1489
+ {
1490
+ "epoch": 2.06,
1491
+ "learning_rate": 1.1306700949035462e-05,
1492
+ "loss": 0.0,
1493
+ "step": 2420
1494
+ },
1495
+ {
1496
+ "epoch": 2.06,
1497
+ "learning_rate": 1.1121148972728104e-05,
1498
+ "loss": 0.0001,
1499
+ "step": 2430
1500
+ },
1501
+ {
1502
+ "epoch": 2.07,
1503
+ "learning_rate": 1.0936695635288674e-05,
1504
+ "loss": 0.0001,
1505
+ "step": 2440
1506
+ },
1507
+ {
1508
+ "epoch": 2.08,
1509
+ "learning_rate": 1.0753355537897427e-05,
1510
+ "loss": 0.0001,
1511
+ "step": 2450
1512
+ },
1513
+ {
1514
+ "epoch": 2.09,
1515
+ "learning_rate": 1.0571143193611444e-05,
1516
+ "loss": 0.0,
1517
+ "step": 2460
1518
+ },
1519
+ {
1520
+ "epoch": 2.1,
1521
+ "learning_rate": 1.039007302621576e-05,
1522
+ "loss": 0.0001,
1523
+ "step": 2470
1524
+ },
1525
+ {
1526
+ "epoch": 2.11,
1527
+ "learning_rate": 1.0210159369081568e-05,
1528
+ "loss": 0.0003,
1529
+ "step": 2480
1530
+ },
1531
+ {
1532
+ "epoch": 2.12,
1533
+ "learning_rate": 1.0031416464031654e-05,
1534
+ "loss": 0.0,
1535
+ "step": 2490
1536
+ },
1537
+ {
1538
+ "epoch": 2.12,
1539
+ "learning_rate": 9.853858460212962e-06,
1540
+ "loss": 0.0001,
1541
+ "step": 2500
1542
+ },
1543
+ {
1544
+ "epoch": 2.12,
1545
+ "eval_loss": 0.012909023091197014,
1546
+ "eval_runtime": 87.9835,
1547
+ "eval_samples_per_second": 22.538,
1548
+ "eval_steps_per_second": 2.819,
1549
+ "step": 2500
1550
+ },
1551
+ {
1552
+ "epoch": 2.13,
1553
+ "learning_rate": 9.677499412976632e-06,
1554
+ "loss": 0.0,
1555
+ "step": 2510
1556
+ },
1557
+ {
1558
+ "epoch": 2.14,
1559
+ "learning_rate": 9.502353282765306e-06,
1560
+ "loss": 0.0001,
1561
+ "step": 2520
1562
+ },
1563
+ {
1564
+ "epoch": 2.15,
1565
+ "learning_rate": 9.328433934008107e-06,
1566
+ "loss": 0.0002,
1567
+ "step": 2530
1568
+ },
1569
+ {
1570
+ "epoch": 2.16,
1571
+ "learning_rate": 9.155755134023097e-06,
1572
+ "loss": 0.0,
1573
+ "step": 2540
1574
+ },
1575
+ {
1576
+ "epoch": 2.17,
1577
+ "learning_rate": 8.984330551927475e-06,
1578
+ "loss": 0.0,
1579
+ "step": 2550
1580
+ },
1581
+ {
1582
+ "epoch": 2.18,
1583
+ "learning_rate": 8.81417375755556e-06,
1584
+ "loss": 0.0002,
1585
+ "step": 2560
1586
+ },
1587
+ {
1588
+ "epoch": 2.18,
1589
+ "learning_rate": 8.645298220384567e-06,
1590
+ "loss": 0.0001,
1591
+ "step": 2570
1592
+ },
1593
+ {
1594
+ "epoch": 2.19,
1595
+ "learning_rate": 8.477717308468442e-06,
1596
+ "loss": 0.0008,
1597
+ "step": 2580
1598
+ },
1599
+ {
1600
+ "epoch": 2.2,
1601
+ "learning_rate": 8.31144428737958e-06,
1602
+ "loss": 0.0,
1603
+ "step": 2590
1604
+ },
1605
+ {
1606
+ "epoch": 2.21,
1607
+ "learning_rate": 8.146492319158805e-06,
1608
+ "loss": 0.0,
1609
+ "step": 2600
1610
+ },
1611
+ {
1612
+ "epoch": 2.22,
1613
+ "learning_rate": 7.982874461273438e-06,
1614
+ "loss": 0.0001,
1615
+ "step": 2610
1616
+ },
1617
+ {
1618
+ "epoch": 2.23,
1619
+ "learning_rate": 7.820603665583654e-06,
1620
+ "loss": 0.0002,
1621
+ "step": 2620
1622
+ },
1623
+ {
1624
+ "epoch": 2.23,
1625
+ "learning_rate": 7.659692777317288e-06,
1626
+ "loss": 0.0001,
1627
+ "step": 2630
1628
+ },
1629
+ {
1630
+ "epoch": 2.24,
1631
+ "learning_rate": 7.500154534052933e-06,
1632
+ "loss": 0.0001,
1633
+ "step": 2640
1634
+ },
1635
+ {
1636
+ "epoch": 2.25,
1637
+ "learning_rate": 7.342001564711756e-06,
1638
+ "loss": 0.0001,
1639
+ "step": 2650
1640
+ },
1641
+ {
1642
+ "epoch": 2.26,
1643
+ "learning_rate": 7.185246388557665e-06,
1644
+ "loss": 0.0,
1645
+ "step": 2660
1646
+ },
1647
+ {
1648
+ "epoch": 2.27,
1649
+ "learning_rate": 7.0299014142064106e-06,
1650
+ "loss": 0.0,
1651
+ "step": 2670
1652
+ },
1653
+ {
1654
+ "epoch": 2.28,
1655
+ "learning_rate": 6.875978938643277e-06,
1656
+ "loss": 0.0001,
1657
+ "step": 2680
1658
+ },
1659
+ {
1660
+ "epoch": 2.29,
1661
+ "learning_rate": 6.723491146249647e-06,
1662
+ "loss": 0.0,
1663
+ "step": 2690
1664
+ },
1665
+ {
1666
+ "epoch": 2.29,
1667
+ "learning_rate": 6.572450107838551e-06,
1668
+ "loss": 0.0001,
1669
+ "step": 2700
1670
+ },
1671
+ {
1672
+ "epoch": 2.3,
1673
+ "learning_rate": 6.422867779699088e-06,
1674
+ "loss": 0.0002,
1675
+ "step": 2710
1676
+ },
1677
+ {
1678
+ "epoch": 2.31,
1679
+ "learning_rate": 6.274756002650034e-06,
1680
+ "loss": 0.0001,
1681
+ "step": 2720
1682
+ },
1683
+ {
1684
+ "epoch": 2.32,
1685
+ "learning_rate": 6.128126501102479e-06,
1686
+ "loss": 0.0001,
1687
+ "step": 2730
1688
+ },
1689
+ {
1690
+ "epoch": 2.33,
1691
+ "learning_rate": 5.982990882131775e-06,
1692
+ "loss": 0.0001,
1693
+ "step": 2740
1694
+ },
1695
+ {
1696
+ "epoch": 2.34,
1697
+ "learning_rate": 5.83936063455871e-06,
1698
+ "loss": 0.0001,
1699
+ "step": 2750
1700
+ },
1701
+ {
1702
+ "epoch": 2.34,
1703
+ "learning_rate": 5.697247128040037e-06,
1704
+ "loss": 0.0,
1705
+ "step": 2760
1706
+ },
1707
+ {
1708
+ "epoch": 2.35,
1709
+ "learning_rate": 5.556661612168537e-06,
1710
+ "loss": 0.0003,
1711
+ "step": 2770
1712
+ },
1713
+ {
1714
+ "epoch": 2.36,
1715
+ "learning_rate": 5.417615215582408e-06,
1716
+ "loss": 0.0001,
1717
+ "step": 2780
1718
+ },
1719
+ {
1720
+ "epoch": 2.37,
1721
+ "learning_rate": 5.280118945084422e-06,
1722
+ "loss": 0.0001,
1723
+ "step": 2790
1724
+ },
1725
+ {
1726
+ "epoch": 2.38,
1727
+ "learning_rate": 5.144183684770565e-06,
1728
+ "loss": 0.0,
1729
+ "step": 2800
1730
+ },
1731
+ {
1732
+ "epoch": 2.39,
1733
+ "learning_rate": 5.00982019516851e-06,
1734
+ "loss": 0.0,
1735
+ "step": 2810
1736
+ },
1737
+ {
1738
+ "epoch": 2.4,
1739
+ "learning_rate": 4.877039112385815e-06,
1740
+ "loss": 0.0001,
1741
+ "step": 2820
1742
+ },
1743
+ {
1744
+ "epoch": 2.4,
1745
+ "learning_rate": 4.74585094726793e-06,
1746
+ "loss": 0.0003,
1747
+ "step": 2830
1748
+ },
1749
+ {
1750
+ "epoch": 2.41,
1751
+ "learning_rate": 4.616266084566243e-06,
1752
+ "loss": 0.0,
1753
+ "step": 2840
1754
+ },
1755
+ {
1756
+ "epoch": 2.42,
1757
+ "learning_rate": 4.488294782115957e-06,
1758
+ "loss": 0.0001,
1759
+ "step": 2850
1760
+ },
1761
+ {
1762
+ "epoch": 2.43,
1763
+ "learning_rate": 4.361947170024144e-06,
1764
+ "loss": 0.0001,
1765
+ "step": 2860
1766
+ },
1767
+ {
1768
+ "epoch": 2.44,
1769
+ "learning_rate": 4.2372332498678256e-06,
1770
+ "loss": 0.0007,
1771
+ "step": 2870
1772
+ },
1773
+ {
1774
+ "epoch": 2.45,
1775
+ "learning_rate": 4.11416289390226e-06,
1776
+ "loss": 0.0061,
1777
+ "step": 2880
1778
+ },
1779
+ {
1780
+ "epoch": 2.46,
1781
+ "learning_rate": 3.992745844279475e-06,
1782
+ "loss": 0.0,
1783
+ "step": 2890
1784
+ },
1785
+ {
1786
+ "epoch": 2.46,
1787
+ "learning_rate": 3.872991712277052e-06,
1788
+ "loss": 0.0001,
1789
+ "step": 2900
1790
+ },
1791
+ {
1792
+ "epoch": 2.47,
1793
+ "learning_rate": 3.7549099775373576e-06,
1794
+ "loss": 0.0002,
1795
+ "step": 2910
1796
+ },
1797
+ {
1798
+ "epoch": 2.48,
1799
+ "learning_rate": 3.6385099873170875e-06,
1800
+ "loss": 0.0,
1801
+ "step": 2920
1802
+ },
1803
+ {
1804
+ "epoch": 2.49,
1805
+ "learning_rate": 3.5238009557473946e-06,
1806
+ "loss": 0.0,
1807
+ "step": 2930
1808
+ },
1809
+ {
1810
+ "epoch": 2.5,
1811
+ "learning_rate": 3.4107919631044732e-06,
1812
+ "loss": 0.0028,
1813
+ "step": 2940
1814
+ },
1815
+ {
1816
+ "epoch": 2.51,
1817
+ "learning_rate": 3.299491955090775e-06,
1818
+ "loss": 0.0003,
1819
+ "step": 2950
1820
+ },
1821
+ {
1822
+ "epoch": 2.51,
1823
+ "learning_rate": 3.1899097421268924e-06,
1824
+ "loss": 0.0001,
1825
+ "step": 2960
1826
+ },
1827
+ {
1828
+ "epoch": 2.52,
1829
+ "learning_rate": 3.0820539986541054e-06,
1830
+ "loss": 0.0,
1831
+ "step": 2970
1832
+ },
1833
+ {
1834
+ "epoch": 2.53,
1835
+ "learning_rate": 2.97593326244775e-06,
1836
+ "loss": 0.0013,
1837
+ "step": 2980
1838
+ },
1839
+ {
1840
+ "epoch": 2.54,
1841
+ "learning_rate": 2.871555933941353e-06,
1842
+ "loss": 0.0001,
1843
+ "step": 2990
1844
+ },
1845
+ {
1846
+ "epoch": 2.55,
1847
+ "learning_rate": 2.7689302755616736e-06,
1848
+ "loss": 0.0001,
1849
+ "step": 3000
1850
+ },
1851
+ {
1852
+ "epoch": 2.55,
1853
+ "eval_loss": 0.014460938051342964,
1854
+ "eval_runtime": 87.9924,
1855
+ "eval_samples_per_second": 22.536,
1856
+ "eval_steps_per_second": 2.818,
1857
+ "step": 3000
1858
+ },
1859
+ {
1860
+ "epoch": 2.56,
1861
+ "learning_rate": 2.6680644110746305e-06,
1862
+ "loss": 0.0,
1863
+ "step": 3010
1864
+ },
1865
+ {
1866
+ "epoch": 2.57,
1867
+ "learning_rate": 2.568966324942268e-06,
1868
+ "loss": 0.0001,
1869
+ "step": 3020
1870
+ },
1871
+ {
1872
+ "epoch": 2.57,
1873
+ "learning_rate": 2.4716438616906977e-06,
1874
+ "loss": 0.0,
1875
+ "step": 3030
1876
+ },
1877
+ {
1878
+ "epoch": 2.58,
1879
+ "learning_rate": 2.376104725289105e-06,
1880
+ "loss": 0.0002,
1881
+ "step": 3040
1882
+ },
1883
+ {
1884
+ "epoch": 2.59,
1885
+ "learning_rate": 2.2823564785399596e-06,
1886
+ "loss": 0.0,
1887
+ "step": 3050
1888
+ },
1889
+ {
1890
+ "epoch": 2.6,
1891
+ "learning_rate": 2.1904065424803e-06,
1892
+ "loss": 0.0,
1893
+ "step": 3060
1894
+ },
1895
+ {
1896
+ "epoch": 2.61,
1897
+ "learning_rate": 2.1002621957943308e-06,
1898
+ "loss": 0.0001,
1899
+ "step": 3070
1900
+ },
1901
+ {
1902
+ "epoch": 2.62,
1903
+ "learning_rate": 2.011930574237228e-06,
1904
+ "loss": 0.0,
1905
+ "step": 3080
1906
+ },
1907
+ {
1908
+ "epoch": 2.63,
1909
+ "learning_rate": 1.925418670070267e-06,
1910
+ "loss": 0.0,
1911
+ "step": 3090
1912
+ },
1913
+ {
1914
+ "epoch": 2.63,
1915
+ "learning_rate": 1.8407333315073466e-06,
1916
+ "loss": 0.0,
1917
+ "step": 3100
1918
+ },
1919
+ {
1920
+ "epoch": 2.64,
1921
+ "learning_rate": 1.7578812621728751e-06,
1922
+ "loss": 0.0001,
1923
+ "step": 3110
1924
+ },
1925
+ {
1926
+ "epoch": 2.65,
1927
+ "learning_rate": 1.6768690205711173e-06,
1928
+ "loss": 0.0002,
1929
+ "step": 3120
1930
+ },
1931
+ {
1932
+ "epoch": 2.66,
1933
+ "learning_rate": 1.5977030195670289e-06,
1934
+ "loss": 0.0,
1935
+ "step": 3130
1936
+ },
1937
+ {
1938
+ "epoch": 2.67,
1939
+ "learning_rate": 1.5203895258786238e-06,
1940
+ "loss": 0.0001,
1941
+ "step": 3140
1942
+ },
1943
+ {
1944
+ "epoch": 2.68,
1945
+ "learning_rate": 1.4449346595809015e-06,
1946
+ "loss": 0.0001,
1947
+ "step": 3150
1948
+ },
1949
+ {
1950
+ "epoch": 2.68,
1951
+ "learning_rate": 1.3713443936213822e-06,
1952
+ "loss": 0.0,
1953
+ "step": 3160
1954
+ },
1955
+ {
1956
+ "epoch": 2.69,
1957
+ "learning_rate": 1.299624553347309e-06,
1958
+ "loss": 0.0,
1959
+ "step": 3170
1960
+ },
1961
+ {
1962
+ "epoch": 2.7,
1963
+ "learning_rate": 1.2297808160444929e-06,
1964
+ "loss": 0.0,
1965
+ "step": 3180
1966
+ },
1967
+ {
1968
+ "epoch": 2.71,
1969
+ "learning_rate": 1.161818710487933e-06,
1970
+ "loss": 0.0,
1971
+ "step": 3190
1972
+ },
1973
+ {
1974
+ "epoch": 2.72,
1975
+ "learning_rate": 1.095743616504144e-06,
1976
+ "loss": 0.0001,
1977
+ "step": 3200
1978
+ },
1979
+ {
1980
+ "epoch": 2.73,
1981
+ "learning_rate": 1.0315607645452836e-06,
1982
+ "loss": 0.0006,
1983
+ "step": 3210
1984
+ },
1985
+ {
1986
+ "epoch": 2.74,
1987
+ "learning_rate": 9.692752352751466e-07,
1988
+ "loss": 0.0001,
1989
+ "step": 3220
1990
+ },
1991
+ {
1992
+ "epoch": 2.74,
1993
+ "learning_rate": 9.088919591669548e-07,
1994
+ "loss": 0.0001,
1995
+ "step": 3230
1996
+ },
1997
+ {
1998
+ "epoch": 2.75,
1999
+ "learning_rate": 8.504157161130788e-07,
2000
+ "loss": 0.0,
2001
+ "step": 3240
2002
+ },
2003
+ {
2004
+ "epoch": 2.76,
2005
+ "learning_rate": 7.938511350466527e-07,
2006
+ "loss": 0.0001,
2007
+ "step": 3250
2008
+ },
2009
+ {
2010
+ "epoch": 2.77,
2011
+ "learning_rate": 7.39202693575175e-07,
2012
+ "loss": 0.0001,
2013
+ "step": 3260
2014
+ },
2015
+ {
2016
+ "epoch": 2.78,
2017
+ "learning_rate": 6.864747176260289e-07,
2018
+ "loss": 0.0001,
2019
+ "step": 3270
2020
+ },
2021
+ {
2022
+ "epoch": 2.79,
2023
+ "learning_rate": 6.356713811040888e-07,
2024
+ "loss": 0.0002,
2025
+ "step": 3280
2026
+ },
2027
+ {
2028
+ "epoch": 2.8,
2029
+ "learning_rate": 5.867967055612794e-07,
2030
+ "loss": 0.0,
2031
+ "step": 3290
2032
+ },
2033
+ {
2034
+ "epoch": 2.8,
2035
+ "learning_rate": 5.398545598782528e-07,
2036
+ "loss": 0.0002,
2037
+ "step": 3300
2038
+ },
2039
+ {
2040
+ "epoch": 2.81,
2041
+ "learning_rate": 4.948486599581276e-07,
2042
+ "loss": 0.0,
2043
+ "step": 3310
2044
+ },
2045
+ {
2046
+ "epoch": 2.82,
2047
+ "learning_rate": 4.517825684323324e-07,
2048
+ "loss": 0.0,
2049
+ "step": 3320
2050
+ },
2051
+ {
2052
+ "epoch": 2.83,
2053
+ "learning_rate": 4.1065969437860954e-07,
2054
+ "loss": 0.0001,
2055
+ "step": 3330
2056
+ },
2057
+ {
2058
+ "epoch": 2.84,
2059
+ "learning_rate": 3.714832930511336e-07,
2060
+ "loss": 0.0,
2061
+ "step": 3340
2062
+ },
2063
+ {
2064
+ "epoch": 2.85,
2065
+ "learning_rate": 3.342564656228453e-07,
2066
+ "loss": 0.0,
2067
+ "step": 3350
2068
+ },
2069
+ {
2070
+ "epoch": 2.85,
2071
+ "learning_rate": 2.9898215893995054e-07,
2072
+ "loss": 0.0,
2073
+ "step": 3360
2074
+ },
2075
+ {
2076
+ "epoch": 2.86,
2077
+ "learning_rate": 2.6566316528866264e-07,
2078
+ "loss": 0.0052,
2079
+ "step": 3370
2080
+ },
2081
+ {
2082
+ "epoch": 2.87,
2083
+ "learning_rate": 2.3430212217415982e-07,
2084
+ "loss": 0.0,
2085
+ "step": 3380
2086
+ },
2087
+ {
2088
+ "epoch": 2.88,
2089
+ "learning_rate": 2.0490151211180752e-07,
2090
+ "loss": 0.0,
2091
+ "step": 3390
2092
+ },
2093
+ {
2094
+ "epoch": 2.89,
2095
+ "learning_rate": 1.7746366243063806e-07,
2096
+ "loss": 0.0,
2097
+ "step": 3400
2098
+ },
2099
+ {
2100
+ "epoch": 2.9,
2101
+ "learning_rate": 1.5199074508912836e-07,
2102
+ "loss": 0.0001,
2103
+ "step": 3410
2104
+ },
2105
+ {
2106
+ "epoch": 2.91,
2107
+ "learning_rate": 1.2848477650325984e-07,
2108
+ "loss": 0.0001,
2109
+ "step": 3420
2110
+ },
2111
+ {
2112
+ "epoch": 2.91,
2113
+ "learning_rate": 1.069476173869155e-07,
2114
+ "loss": 0.0,
2115
+ "step": 3430
2116
+ },
2117
+ {
2118
+ "epoch": 2.92,
2119
+ "learning_rate": 8.738097260456713e-08,
2120
+ "loss": 0.0,
2121
+ "step": 3440
2122
+ },
2123
+ {
2124
+ "epoch": 2.93,
2125
+ "learning_rate": 6.978639103634444e-08,
2126
+ "loss": 0.0042,
2127
+ "step": 3450
2128
+ },
2129
+ {
2130
+ "epoch": 2.94,
2131
+ "learning_rate": 5.41652654553998e-08,
2132
+ "loss": 0.0004,
2133
+ "step": 3460
2134
+ },
2135
+ {
2136
+ "epoch": 2.95,
2137
+ "learning_rate": 4.051883241767973e-08,
2138
+ "loss": 0.0042,
2139
+ "step": 3470
2140
+ },
2141
+ {
2142
+ "epoch": 2.96,
2143
+ "learning_rate": 2.8848172164025465e-08,
2144
+ "loss": 0.0001,
2145
+ "step": 3480
2146
+ },
2147
+ {
2148
+ "epoch": 2.97,
2149
+ "learning_rate": 1.915420853467187e-08,
2150
+ "loss": 0.0,
2151
+ "step": 3490
2152
+ },
2153
+ {
2154
+ "epoch": 2.97,
2155
+ "learning_rate": 1.1437708896108733e-08,
2156
+ "loss": 0.002,
2157
+ "step": 3500
2158
+ },
2159
+ {
2160
+ "epoch": 2.97,
2161
+ "eval_loss": 0.014973307959735394,
2162
+ "eval_runtime": 87.9852,
2163
+ "eval_samples_per_second": 22.538,
2164
+ "eval_steps_per_second": 2.819,
2165
+ "step": 3500
2166
+ },
2167
+ {
2168
+ "epoch": 2.98,
2169
+ "learning_rate": 6.1840990213946074e-09,
2170
+ "loss": 0.0064,
2171
+ "step": 3510
2172
+ },
2173
+ {
2174
+ "epoch": 2.99,
2175
+ "learning_rate": 2.2263343925993386e-09,
2176
+ "loss": 0.0,
2177
+ "step": 3520
2178
+ },
2179
+ {
2180
+ "epoch": 3.0,
2181
+ "learning_rate": 2.4737375172445563e-10,
2182
+ "loss": 0.0,
2183
+ "step": 3530
2184
+ },
2185
+ {
2186
+ "epoch": 3.0,
2187
+ "step": 3531,
2188
+ "total_flos": 5.305750058460119e+17,
2189
+ "train_loss": 0.06714861565509712,
2190
+ "train_runtime": 17560.0547,
2191
+ "train_samples_per_second": 6.434,
2192
+ "train_steps_per_second": 0.201
2193
+ }
2194
+ ],
2195
+ "logging_steps": 10,
2196
+ "max_steps": 3531,
2197
+ "num_train_epochs": 3,
2198
+ "save_steps": 1000,
2199
+ "total_flos": 5.305750058460119e+17,
2200
+ "trial_name": null,
2201
+ "trial_params": null
2202
+ }
LLM-Detector-V1-4w/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31eb820fabf5021fa0eda935da3d201c65c7331d3ce4ce4ad4631151a6068e9
3
+ size 4664
LLM-Detector-V1-4w/training_eval_loss.png ADDED