File size: 3,094 Bytes
282cb76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-Nemo-Base-2407
tags:
- axolotl
- generated_from_trainer
model-index:
- name: pyg3v1-nemo-3ep-ckpts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
chat_template: chatml
datasets:
- path: PygTesting/pyg3v1
type: sharegpt
conversation: chatml
hub_model_id: PygTesting/pyg3v1-nemo-3ep-ckpts
hub_strategy: every_save
hf_use_auth_token: true
dataset_prepared_path: ./data/pyg3v1-data/tokenized
val_set_size: 0.0
output_dir: ./data/pyg3v1-nemo-2eps-out
sequence_len: 8192
sample_packing: true
#eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: pyg3v1-nemo
wandb_entity:
wandb_watch:
wandb_name: more_eps_lower_lr
wandb_log_model:
#unsloth_cross_entropy_loss: true
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0000075
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.03
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
</details><br>
# pyg3v1-nemo-3ep-ckpts
This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 29
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+rocm6.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|