Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

chat_template: chatml

datasets:
  - path: PygTesting/pyg3v1
    type: sharegpt
    conversation: chatml

hub_model_id: PygTesting/pyg3v1-nemo-3ep-ckpts
hub_strategy: every_save
hf_use_auth_token: true

dataset_prepared_path: ./data/pyg3v1-data/tokenized
val_set_size: 0.0
output_dir: ./data/pyg3v1-nemo-2eps-out

sequence_len: 8192
sample_packing: true
#eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: pyg3v1-nemo
wandb_entity:
wandb_watch:
wandb_name: more_eps_lower_lr
wandb_log_model:
 
 #unsloth_cross_entropy_loss: true

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0000075

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.03
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: <pad>

pyg3v1-nemo-3ep-ckpts

This model is a fine-tuned version of mistralai/Mistral-Nemo-Base-2407 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 29
  • num_epochs: 3

Training results

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+rocm6.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PygTesting/pyg3v1-nemo-3ep-ckpts

Finetuned
(45)
this model