|
---
|
|
base_model:
|
|
- PrincetonPLI/Eagle-X2-Llama3-8B
|
|
library_name: transformers
|
|
license: cc-by-nc-sa-4.0
|
|
pipeline_tag: image-text-to-text
|
|
---
|
|
|
|
# Model Card for Eagle-X2-Llama3-8B-ConsecutiveTableReadout-Mix-160k
|
|
This model follows the adapter-based VLM structure from [LLaVA](https://github.com/haotian-liu/LLaVA) and [Eagle](https://github.com/NVlabs/EAGLE). This model uses [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base LLM and CLIP-448 (based on [CLIP-336](openai/clip-vit-large-patch14-336)) and [ConvNeXt](https://github.com/facebookresearch/ConvNeXt) as the visual encoders.
|
|
|
|
## Training Details
|
|
We trained [Eagle-X2-Llama3-8B](https://huggingface.co/PrincetonPLI/Eagle-X2-Llama3-8B) on 160k examples of **Mix** supervision on Consecutive Table Readout.
|
|
|
|
## Citation
|
|
Paper: [Generalizing from SIMPLE to HARD Visual Reasoning](https://arxiv.org/abs/2501.02669)
|
|
```
|
|
@misc{park2025generalizingsimplehardvisual,
|
|
title={Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs?},
|
|
author={Simon Park and Abhishek Panigrahi and Yun Cheng and Dingli Yu and Anirudh Goyal and Sanjeev Arora},
|
|
year={2025},
|
|
eprint={2501.02669},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV},
|
|
url={https://arxiv.org/abs/2501.02669},
|
|
}
|
|
```
|
|
|
|
## Contact
|
|
Simon Park, Princeton University
|
|
|
|
Abhishek Panigrahi, Princeton University
|
|
|
|
Yun Cheng, Princeton University
|
|
|
|
{juhyunp, ap34, yc6206} 'at' princeton 'dot' edu |