File size: 1,733 Bytes
50acf1f
a633fd8
 
50acf1f
 
7d09045
 
50acf1f
 
524d25c
50acf1f
 
 
 
 
 
 
aa0496e
7d09045
 
 
50acf1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d09045
 
 
 
 
 
 
 
 
 
50acf1f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
language:
- en
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification

This model is a fine-tuned version of [BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the ade_corpus_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1982
- Accuracy: 0.9611

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.8069489920382708e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1657        | 1.0   | 1176 | 0.1405          | 0.9511   |
| 0.1019        | 2.0   | 2352 | 0.1767          | 0.9575   |
| 0.055         | 3.0   | 3528 | 0.1982          | 0.9611   |
| 0.0424        | 4.0   | 4704 | 0.2038          | 0.9605   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2