Praise2112 commited on
Commit
a633fd8
·
1 Parent(s): 833cba3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -3
README.md CHANGED
@@ -1,12 +1,27 @@
1
  ---
2
- license: mit
 
3
  tags:
4
  - generated_from_trainer
 
 
5
  metrics:
6
  - accuracy
7
  model-index:
8
  - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,7 +29,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
16
 
17
- This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.1982
20
  - Accuracy: 0.9611
 
1
  ---
2
+ language:
3
+ - en
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - ade_corpus_v2
8
  metrics:
9
  - accuracy
10
  model-index:
11
  - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: ade_corpus_v2
18
+ type: ade_corpus_v2
19
+ config: null
20
+ split: None
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9610969387755102
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-ade-v2-classification
31
 
32
+ This model is a fine-tuned version of [BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the ade_corpus_v2 dataset.
33
  It achieves the following results on the evaluation set:
34
  - Loss: 0.1982
35
  - Accuracy: 0.9611