opus-mt-ar-en-finetuned-ar-to-en
This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_infopankki dataset. It achieves the following results on the evaluation set:
- Loss: 0.7269
- Bleu: 51.6508
- Gen Len: 15.0812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
1.4974 | 1.0 | 1587 | 1.3365 | 36.9061 | 15.3385 |
1.3768 | 2.0 | 3174 | 1.2139 | 39.5476 | 15.2079 |
1.2887 | 3.0 | 4761 | 1.1265 | 41.2771 | 15.2034 |
1.2076 | 4.0 | 6348 | 1.0556 | 42.6907 | 15.2687 |
1.1512 | 5.0 | 7935 | 0.9975 | 43.9498 | 15.2072 |
1.0797 | 6.0 | 9522 | 0.9491 | 45.224 | 15.2034 |
1.0499 | 7.0 | 11109 | 0.9101 | 46.1387 | 15.1651 |
1.0095 | 8.0 | 12696 | 0.8778 | 47.0586 | 15.1788 |
0.9833 | 9.0 | 14283 | 0.8501 | 47.8083 | 15.162 |
0.9601 | 10.0 | 15870 | 0.8267 | 48.5236 | 15.1784 |
0.9457 | 11.0 | 17457 | 0.8059 | 49.1717 | 15.095 |
0.9233 | 12.0 | 19044 | 0.7883 | 49.7742 | 15.1126 |
0.8964 | 13.0 | 20631 | 0.7736 | 50.2168 | 15.0917 |
0.8849 | 14.0 | 22218 | 0.7606 | 50.5583 | 15.0913 |
0.8751 | 15.0 | 23805 | 0.7504 | 50.8481 | 15.1108 |
0.858 | 16.0 | 25392 | 0.7417 | 51.1841 | 15.0989 |
0.8673 | 17.0 | 26979 | 0.7353 | 51.4271 | 15.0939 |
0.8548 | 18.0 | 28566 | 0.7306 | 51.535 | 15.0911 |
0.8483 | 19.0 | 30153 | 0.7279 | 51.6102 | 15.078 |
0.8614 | 20.0 | 31740 | 0.7269 | 51.6508 | 15.0812 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.7.1+cu110
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.