Model description
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FR dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 2.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.495 | 0.16 | 500 | 3.3883 | 1.0 |
2.9095 | 0.32 | 1000 | 2.9152 | 1.0000 |
1.8434 | 0.49 | 1500 | 1.0473 | 0.7446 |
1.4298 | 0.65 | 2000 | 0.5729 | 0.5130 |
1.1937 | 0.81 | 2500 | 0.3795 | 0.3450 |
1.1248 | 0.97 | 3000 | 0.3321 | 0.3052 |
1.0835 | 1.13 | 3500 | 0.3038 | 0.2805 |
1.0479 | 1.3 | 4000 | 0.2910 | 0.2689 |
1.0413 | 1.46 | 4500 | 0.2798 | 0.2593 |
1.014 | 1.62 | 5000 | 0.2727 | 0.2512 |
1.004 | 1.78 | 5500 | 0.2646 | 0.2471 |
0.9949 | 1.94 | 6000 | 0.2619 | 0.2457 |
It achieves the best result on STEP 6000 on the validation set:
- Loss: 0.2619
- Wer: 0.2457
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7
with splittest
python eval.py --model_id Plim/xls-r-300m-fr --dataset mozilla-foundation/common_voice_7_0 --config fr --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id Plim/xls-r-300m-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Plim/xls-r-300m-fr
Evaluation results
- Test WER on Common Voice 7self-reported24.560
- Test CER on Common Voice 7self-reported7.300
- Test WER on Robust Speech Event - Dev Dataself-reported63.620
- Test CER on Robust Speech Event - Dev Dataself-reported17.200
- Test WER on Robust Speech Event - Test Dataself-reported66.450