mt5-small-gigatrue-layercut-D5

This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4092

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.6665 0.1015 3000 2.5503
3.1237 0.2030 6000 2.4814
3.0657 0.3044 9000 2.4631
3.0389 0.4059 12000 2.4435
3.0188 0.5074 15000 2.4455
3.0112 0.6089 18000 2.4229
3.0059 0.7104 21000 2.4302
3.0001 0.8119 24000 2.4221
2.994 0.9133 27000 2.4214
2.9932 1.0148 30000 2.4205
2.991 1.1163 33000 2.4148
2.9857 1.2178 36000 2.4131
2.985 1.3193 39000 2.4148
2.9831 1.4207 42000 2.4104
2.9842 1.5222 45000 2.4128
2.9785 1.6237 48000 2.4131
2.9817 1.7252 51000 2.4099
2.9754 1.8267 54000 2.4114
2.977 1.9282 57000 2.4088
2.9784 2.0296 60000 2.4082
2.9792 2.1311 63000 2.4095
2.9768 2.2326 66000 2.4102
2.9773 2.3341 69000 2.4096
2.9764 2.4356 72000 2.4085
2.9771 2.5370 75000 2.4076
2.9795 2.6385 78000 2.4085
2.9768 2.7400 81000 2.4088
2.9762 2.8415 84000 2.4093
2.9776 2.9430 87000 2.4092

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
153
Safetensors
Model size
297M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Plasmoxy/mt5-small-gigatrue-layercut-D5

Base model

google/mt5-small
Finetuned
(385)
this model