Text-to-Image
Diffusers
Safetensors
PixArtAlphaPipeline
Pixart-α
LCM
File size: 7,008 Bytes
9885a9b
f395921
4005a92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b40b5f
 
 
 
534bd5f
 
 
 
 
 
0b40b5f
 
 
 
4005a92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e153060
4005a92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: openrail++
tags:
- text-to-image
- Pixart-α
- LCM
---

<p align="center">
  <img src="asset/pixart-lcm2.png"  height=120>
</p>

<div style="display:flex;justify-content: center">
  <a href="https://pixart-alpha.github.io/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <a href="https://huggingface.co/spaces/PixArt-alpha/PixArt-alpha"><img src="https://img.shields.io/static/v1?label=Demo PixArt&message=HuggingFace&color=yellow"></a> &ensp;
  <a href="https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM"><img src="https://img.shields.io/static/v1?label=Demo PixArt-LCM&message=HuggingFace&color=yellow"></a> &ensp;
  <a href="https://arxiv.org/abs/2310.00426"><img src="https://img.shields.io/static/v1?label=PixArt&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
  <a href="https://arxiv.org/abs/2310.04378"><img src="https://img.shields.io/static/v1?label=LCM&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
  <a href="https://github.com/orgs/PixArt-alpha/discussions"><img src="https://img.shields.io/static/v1?label=Discussion&message=Github&color=green&logo=github"></a> &ensp;
</div>

# 🐱 Pixart-LCM Model Card

## 🔥 Why Need PixArt-LCM
Following [LCM LoRA](https://huggingface.co/blog/lcm_lora), we illustrative of the generation speed we achieve on various computers. Let us stress again how liberating it is to explore image generation so easily with PixArt-LCM.

| Hardware                    | PixArt-LCM (4 steps) | SDXL LoRA LCM (4 steps) | PixArt standard (14 steps) | SDXL standard (25 steps) |
|-----------------------------|----------------------|-------------------------|----------------------------|---------------------------|
| T4 (Google Colab Free Tier) | 3.3s                 | 8.4s                    | 16.0s                      | 26.5s                     |
| A100 (80 GB)                | 0.51s                | 1.2s                    | 2.2s                       | 3.8s                      |
| V100 (32 GB)                | 0.8s                 | 1.2s                    | 5.5s                       | 7.7s                      |

These tests were run with a batch size of 1 in all cases.

For cards with a lot of capacity, such as A100, performance increases significantly when generating multiple images at once, which is usually the case for production workloads.

## Model
![pipeline](asset/model.png)

[Pixart-α](https://arxiv.org/abs/2310.00426) consists of pure transformer blocks for latent diffusion: 
It can directly generate 1024px images from text prompts within a single sampling process.

[LCMs](https://arxiv.org/abs/2310.04378) is a diffusion distillation method which predict PF-ODE's solution directly in latent space, achieving super fast inference with few steps.

Source code of PixArt-LCM is available at https://github.com/PixArt-alpha/PixArt-alpha.

### Model Description

- **Developed by:** Pixart & LCM teams
- **Model type:** Diffusion-Transformer-based text-to-image generative model
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. 
It is a [Transformer Latent Diffusion Model](https://arxiv.org/abs/2310.00426) that uses one fixed, pretrained text encoders ([T5](
https://huggingface.co/DeepFloyd/t5-v1_1-xxl))
and one latent feature encoder ([VAE](https://arxiv.org/abs/2112.10752)).
- **Resources for more information:** Check out our [PixArt-α](https://github.com/PixArt-alpha/PixArt-alpha), [LCM](https://github.com/luosiallen/latent-consistency-model) GitHub Repository
and the [Pixart-α](https://arxiv.org/abs/2310.00426), [LCM](https://arxiv.org/abs/2310.04378) reports on arXiv.

### Model Sources

For research purposes, we recommend our `generative-models` Github repository (https://github.com/PixArt-alpha/PixArt-alpha), 
which is more suitable for developing both training and inference designs.
[Hugging Face](https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM) provides free Pixart-LCM inference.
- **Repository:** https://github.com/PixArt-alpha/PixArt-alpha
- **Demo:** https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM

### 🧨 Diffusers 

Make sure to upgrade diffusers to >= 0.23.0:
```
pip install -U diffusers --upgrade
```

In addition make sure to install `transformers`, `safetensors`, `sentencepiece`, and `accelerate`:
```
pip install transformers accelerate safetensors sentencepiece
```

To just use the base model, you can run:


```python
import torch
from diffusers import PixArtAlphaPipeline

# only 1024-MS version is supported for now
pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-LCM-XL-2-1024-MS", torch_dtype=torch.float16, use_safetensors=True)

# Enable memory optimizations.
pipe.enable_model_cpu_offload()

prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt, guidance_scale=0., num_inference_steps=4).images[0]
```

When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
```py
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
```

If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
instead of `.to("cuda")`:

```diff
- pipe.to("cuda")
+ pipe.enable_model_cpu_offload()
```

The diffusers use here is totally the same as the base-model PixArt-α.
For more information on how to use Pixart-α with `diffusers`, please have a look at [the Pixart-α Docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pixart).

## Uses

### Direct Use

The model is intended for research purposes only. Possible research areas and tasks include

- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
- Safe deployment of models which have the potential to generate harmful content.

- Probing and understanding the limitations and biases of generative models.

Excluded uses are described below.

### Out-of-Scope Use

The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.

## Limitations and Bias

### Limitations


- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- fingers, .etc in general may not be generated properly.
- The autoencoding part of the model is lossy.

### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.