Text-to-Image
Diffusers
Safetensors
PixArtAlphaPipeline
Pixart-α
LCM
Lawrence-cj commited on
Commit
4005a92
1 Parent(s): f395921

First add PixArt-LCM model card.

Browse files
Files changed (4) hide show
  1. .DS_Store +0 -0
  2. README.md +127 -1
  3. asset/model.png +0 -0
  4. asset/pixart-lcm2.png +0 -0
.DS_Store ADDED
Binary file (10.2 kB). View file
 
README.md CHANGED
@@ -1,3 +1,129 @@
1
  ---
2
  license: openrail++
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: openrail++
3
+ tags:
4
+ - text-to-image
5
+ - Pixart-α
6
+ - LCM
7
+ ---
8
+
9
+ <p align="center">
10
+ <img src="asset/pixart-lcm2.png" height=120>
11
+ </p>
12
+
13
+ <div style="display:flex;justify-content: center">
14
+ <a href="https://pixart-alpha.github.io/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
15
+ <a href="https://huggingface.co/spaces/PixArt-alpha/PixArt-alpha"><img src="https://img.shields.io/static/v1?label=Demo PixArt&message=HuggingFace&color=yellow"></a> &ensp;
16
+ <a href="https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM"><img src="https://img.shields.io/static/v1?label=Demo PixArt-LCM&message=HuggingFace&color=yellow"></a> &ensp;
17
+ <a href="https://arxiv.org/abs/2310.00426"><img src="https://img.shields.io/static/v1?label=PixArt&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
18
+ <a href="https://arxiv.org/abs/2310.04378"><img src="https://img.shields.io/static/v1?label=LCM&message=Arxiv&color=red&logo=arxiv"></a> &ensp;
19
+ <a href="https://github.com/orgs/PixArt-alpha/discussions"><img src="https://img.shields.io/static/v1?label=Discussion&message=Github&color=green&logo=github"></a> &ensp;
20
+ </div>
21
+
22
+ # 🐱 Pixart-LCM Model Card
23
+ ## Model
24
+ ![pipeline](asset/model.png)
25
+
26
+ [Pixart-α](https://arxiv.org/abs/2310.00426) consists of pure transformer blocks for latent diffusion:
27
+ It can directly generate 1024px images from text prompts within a single sampling process.
28
+
29
+ [LCMs](https://arxiv.org/abs/2310.04378) is a diffusion distillation method which predict PF-ODE's solution directly in latent space, achieving super fast inference with few steps.
30
+
31
+ Source code of PixArt-LCM is available at https://github.com/PixArt-alpha/PixArt-alpha.
32
+
33
+ ### Model Description
34
+
35
+ - **Developed by:** Pixart & LCM teams
36
+ - **Model type:** Diffusion-Transformer-based text-to-image generative model
37
+ - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
38
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
39
+ It is a [Transformer Latent Diffusion Model](https://arxiv.org/abs/2310.00426) that uses one fixed, pretrained text encoders ([T5](
40
+ https://huggingface.co/DeepFloyd/t5-v1_1-xxl))
41
+ and one latent feature encoder ([VAE](https://arxiv.org/abs/2112.10752)).
42
+ - **Resources for more information:** Check out our [PixArt-α](https://github.com/PixArt-alpha/PixArt-alpha), [LCM](https://github.com/luosiallen/latent-consistency-model) GitHub Repository
43
+ and the [Pixart-α](https://arxiv.org/abs/2310.00426), [LCM](https://arxiv.org/abs/2310.04378) reports on arXiv.
44
+
45
+ ### Model Sources
46
+
47
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/PixArt-alpha/PixArt-alpha),
48
+ which is more suitable for developing both training and inference designs.
49
+ [Hugging Face](https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM) provides free Pixart-LCM inference.
50
+ - **Repository:** https://github.com/PixArt-alpha/PixArt-alpha
51
+ - **Demo:** https://huggingface.co/spaces/PixArt-alpha/PixArt-LCM
52
+
53
+ ### 🧨 Diffusers
54
+
55
+ Make sure to upgrade diffusers to >= 0.23.0:
56
+ ```
57
+ pip install -U diffusers --upgrade
58
+ ```
59
+
60
+ In addition make sure to install `transformers`, `safetensors`, `sentencepiece`, and `accelerate`:
61
+ ```
62
+ pip install transformers accelerate safetensors sentencepiece
63
+ ```
64
+
65
+ To just use the base model, you can run:
66
+
67
+
68
+ ```python
69
+ import torch
70
+ from diffusers import PixArtAlphaPipeline
71
+
72
+ # only 1024-MS version is supported for now
73
+ pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-LCM-XL-2-1024-MS", torch_dtype=torch.float16, use_safetensors=True)
74
+
75
+ # Enable memory optimizations.
76
+ pipe.enable_model_cpu_offload()
77
+
78
+ prompt = "A small cactus with a happy face in the Sahara desert."
79
+ image = pipe(prompt).images[0]
80
+ ```
81
+
82
+ When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
83
+ ```py
84
+ pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
85
+ ```
86
+
87
+ If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
88
+ instead of `.to("cuda")`:
89
+
90
+ ```diff
91
+ - pipe.to("cuda")
92
+ + pipe.enable_model_cpu_offload()
93
+ ```
94
+
95
+ The diffusers use here is totally the same as the base-model PixArt-α.
96
+ For more information on how to use Pixart-α with `diffusers`, please have a look at [the Pixart-α Docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pixart).
97
+
98
+ ## Uses
99
+
100
+ ### Direct Use
101
+
102
+ The model is intended for research purposes only. Possible research areas and tasks include
103
+
104
+ - Generation of artworks and use in design and other artistic processes.
105
+ - Applications in educational or creative tools.
106
+ - Research on generative models.
107
+ - Safe deployment of models which have the potential to generate harmful content.
108
+
109
+ - Probing and understanding the limitations and biases of generative models.
110
+
111
+ Excluded uses are described below.
112
+
113
+ ### Out-of-Scope Use
114
+
115
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
116
+
117
+ ## Limitations and Bias
118
+
119
+ ### Limitations
120
+
121
+
122
+ - The model does not achieve perfect photorealism
123
+ - The model cannot render legible text
124
+ - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
125
+ - fingers, .etc in general may not be generated properly.
126
+ - The autoencoding part of the model is lossy.
127
+
128
+ ### Bias
129
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
asset/model.png ADDED
asset/pixart-lcm2.png ADDED