vit-base-patch16-224-in21k-finetuned-eurosat

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0548
  • Accuracy: 0.9893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: IPU
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • training precision: Mixed Precision

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1182 1.0 759 0.1451 0.9752
0.132 2.0 1518 0.0755 0.9841
0.0262 3.0 2277 0.0548 0.9893

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.13.0+rocm5.2
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .