language: fa | |
license: mit | |
pipeline_tag: token-classification | |
inference: false | |
# NER_ARMAN_parsbert | |
This model is fine-tuned for Named Entity Recognition task. It has been fine-tuned on ARMAN Dataset, using the pretrained model [bert-base-parsbert-ner-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-ner-uncased). | |
## Usage | |
```python | |
def predict(input_text): | |
nlp = pipeline("ner", model="PardisSzah/Persian_NER_parsbert") | |
output_predictions = [] | |
for sequence in input_text: | |
result = nlp(sequence) | |
output_predictions.append(result) | |
return output_predictions | |
text = [ | |
"علی اکبری در روز شنبه به دیدن مادرش مریم حسنی رفت و بعد به بیمارستان ارتش سر زد" | |
] | |
output = predict(text) | |
print(output) | |
# output: [[{'entity': 'B-person', 'score': 0.9998951, 'index': 1, 'word': 'علی', 'start': 0, 'end': 3}, {'entity': 'I-person', 'score': 0.9999027, 'index': 2, 'word': 'اکبری', 'start': 4, 'end': 9}, {'entity': 'B-person', 'score': 0.9998709, 'index': 9, 'word': 'مریم', 'start': 36, 'end': 40}, {'entity': 'I-person', 'score': 0.9996691, 'index': 10, 'word': 'حسنی', 'start': 41, 'end': 45}, {'entity': 'B-facility', 'score': 0.9561743, 'index': 15, 'word': 'بیمارستان', 'start': 59, 'end': 68}, {'entity': 'I-facility', 'score': 0.9976502, 'index': 16, 'word': 'ارتش', 'start': 69, 'end': 73}]] | |