ft-Llama3-8b-orpo

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the mlabonne/orpo-dpo-mix-40k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8983
  • Rewards/chosen: -0.0999
  • Rewards/rejected: -0.1748
  • Rewards/accuracies: 0.4000
  • Rewards/margins: 0.0749
  • Logps/rejected: -1.7478
  • Logps/chosen: -0.9993
  • Logits/rejected: -1.5466
  • Logits/chosen: -1.5315
  • Nll Loss: 0.8281
  • Log Odds Ratio: -0.7026
  • Log Odds Chosen: 0.7314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.6579 0.2 25 1.2469 -0.1560 -0.2318 0.5 0.0758 -2.3180 -1.5595 -1.2300 -1.0199 1.1776 -0.6935 0.7440
1.1014 0.4 50 1.0297 -0.1262 -0.1994 0.5 0.0732 -1.9942 -1.2621 -1.4006 -1.3743 0.9587 -0.7096 0.7137
0.9391 0.61 75 0.9463 -0.1106 -0.1844 0.5 0.0738 -1.8440 -1.1062 -1.5970 -1.5504 0.8754 -0.7083 0.7185
0.676 0.81 100 0.8983 -0.0999 -0.1748 0.4000 0.0749 -1.7478 -0.9993 -1.5466 -1.5315 0.8281 -0.7026 0.7314

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.4.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for OsamaAliMid/ft-Llama3-8b-orpo

Adapter
(538)
this model