|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- ro |
|
base_model: |
|
- google/gemma-7b |
|
datasets: |
|
- OpenLLM-Ro/ro_sft_alpaca |
|
- OpenLLM-Ro/ro_sft_alpaca_gpt4 |
|
- OpenLLM-Ro/ro_sft_dolly |
|
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4 |
|
- OpenLLM-Ro/ro_sft_norobots |
|
- OpenLLM-Ro/ro_sft_orca |
|
- OpenLLM-Ro/ro_sft_camel |
|
model-index: |
|
- name: OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28 |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: RoMT-Bench |
|
type: RoMT-Bench |
|
metrics: |
|
- name: Score |
|
type: Score |
|
value: 5.26 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: RoCulturaBench |
|
type: RoCulturaBench |
|
metrics: |
|
- name: Score |
|
type: Score |
|
value: 3.26 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: Romanian_Academic_Benchmarks |
|
type: Romanian_Academic_Benchmarks |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 53.41 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_arc_challenge |
|
type: OpenLLM-Ro/ro_arc_challenge |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 52.44 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_mmlu |
|
type: OpenLLM-Ro/ro_mmlu |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 54.44 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_winogrande |
|
type: OpenLLM-Ro/ro_winogrande |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 69.36 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_hellaswag |
|
type: OpenLLM-Ro/ro_hellaswag |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 61.96 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_gsm8k |
|
type: OpenLLM-Ro/ro_gsm8k |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 31.06 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_truthfulqa |
|
type: OpenLLM-Ro/ro_truthfulqa |
|
metrics: |
|
- name: Average accuracy |
|
type: accuracy |
|
value: 51.23 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_binary |
|
type: LaRoSeDa_binary |
|
metrics: |
|
- name: Average macro-f1 |
|
type: macro-f1 |
|
value: 97.86 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_multiclass |
|
type: LaRoSeDa_multiclass |
|
metrics: |
|
- name: Average macro-f1 |
|
type: macro-f1 |
|
value: 65.70 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_binary_finetuned |
|
type: LaRoSeDa_binary_finetuned |
|
metrics: |
|
- name: Average macro-f1 |
|
type: macro-f1 |
|
value: 98.43 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_multiclass_finetuned |
|
type: LaRoSeDa_multiclass_finetuned |
|
metrics: |
|
- name: Average macro-f1 |
|
type: macro-f1 |
|
value: 87.17 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_EN-RO |
|
type: WMT_EN-RO |
|
metrics: |
|
- name: Average bleu |
|
type: bleu |
|
value: 27.91 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_RO-EN |
|
type: WMT_RO-EN |
|
metrics: |
|
- name: Average bleu |
|
type: bleu |
|
value: 23.08 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_EN-RO_finetuned |
|
type: WMT_EN-RO_finetuned |
|
metrics: |
|
- name: Average bleu |
|
type: bleu |
|
value: 27.99 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_RO-EN_finetuned |
|
type: WMT_RO-EN_finetuned |
|
metrics: |
|
- name: Average bleu |
|
type: bleu |
|
value: 39.51 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD |
|
type: XQuAD |
|
metrics: |
|
- name: Average exact_match |
|
type: exact_match |
|
value: 17.75 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD |
|
type: XQuAD |
|
metrics: |
|
- name: Average f1 |
|
type: f1 |
|
value: 28.11 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD_finetuned |
|
type: XQuAD_finetuned |
|
metrics: |
|
- name: Average exact_match |
|
type: exact_match |
|
value: 52.02 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD_finetuned |
|
type: XQuAD_finetuned |
|
metrics: |
|
- name: Average f1 |
|
type: f1 |
|
value: 68.43 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS |
|
type: STS |
|
metrics: |
|
- name: Average spearman |
|
type: spearman |
|
value: 73.96 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS |
|
type: STS |
|
metrics: |
|
- name: Average pearson |
|
type: pearson |
|
value: 75.16 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS_finetuned |
|
type: STS_finetuned |
|
metrics: |
|
- name: Average spearman |
|
type: spearman |
|
value: 86.45 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS_finetuned |
|
type: STS_finetuned |
|
metrics: |
|
- name: Average pearson |
|
type: pearson |
|
value: 86.31 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: RoMT-Bench |
|
type: RoMT-Bench |
|
metrics: |
|
- name: First turn |
|
type: Score |
|
value: 5.92 |
|
- name: Second turn |
|
type: Score |
|
value: 4.60 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_arc_challenge |
|
type: OpenLLM-Ro/ro_arc_challenge |
|
metrics: |
|
- name: 0-shot |
|
type: accuracy |
|
value: 50.30 |
|
- name: 1-shot |
|
type: accuracy |
|
value: 50.90 |
|
- name: 3-shot |
|
type: accuracy |
|
value: 52.53 |
|
- name: 5-shot |
|
type: accuracy |
|
value: 53.30 |
|
- name: 10-shot |
|
type: accuracy |
|
value: 54.33 |
|
- name: 25-shot |
|
type: accuracy |
|
value: 53.30 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_mmlu |
|
type: OpenLLM-Ro/ro_mmlu |
|
metrics: |
|
- name: 0-shot |
|
type: accuracy |
|
value: 54.95 |
|
- name: 1-shot |
|
type: accuracy |
|
value: 54.01 |
|
- name: 3-shot |
|
type: accuracy |
|
value: 54.03 |
|
- name: 5-shot |
|
type: accuracy |
|
value: 54.76 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_winogrande |
|
type: OpenLLM-Ro/ro_winogrande |
|
metrics: |
|
- name: 0-shot |
|
type: accuracy |
|
value: 68.67 |
|
- name: 1-shot |
|
type: accuracy |
|
value: 69.46 |
|
- name: 3-shot |
|
type: accuracy |
|
value: 68.43 |
|
- name: 5-shot |
|
type: accuracy |
|
value: 70.88 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_hellaswag |
|
type: OpenLLM-Ro/ro_hellaswag |
|
metrics: |
|
- name: 0-shot |
|
type: accuracy |
|
value: 61.54 |
|
- name: 1-shot |
|
type: accuracy |
|
value: 61.54 |
|
- name: 3-shot |
|
type: accuracy |
|
value: 62.08 |
|
- name: 5-shot |
|
type: accuracy |
|
value: 62.12 |
|
- name: 10-shot |
|
type: accuracy |
|
value: 62.51 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: OpenLLM-Ro/ro_gsm8k |
|
type: OpenLLM-Ro/ro_gsm8k |
|
metrics: |
|
- name: 1-shot |
|
type: accuracy |
|
value: 24.79 |
|
- name: 3-shot |
|
type: accuracy |
|
value: 34.50 |
|
- name: 5-shot |
|
type: accuracy |
|
value: 33.89 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_binary |
|
type: LaRoSeDa_binary |
|
metrics: |
|
- name: 0-shot |
|
type: macro-f1 |
|
value: 97.60 |
|
- name: 1-shot |
|
type: macro-f1 |
|
value: 97.23 |
|
- name: 3-shot |
|
type: macro-f1 |
|
value: 98.13 |
|
- name: 5-shot |
|
type: macro-f1 |
|
value: 98.50 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: LaRoSeDa_multiclass |
|
type: LaRoSeDa_multiclass |
|
metrics: |
|
- name: 0-shot |
|
type: macro-f1 |
|
value: 68.53 |
|
- name: 1-shot |
|
type: macro-f1 |
|
value: 64.84 |
|
- name: 3-shot |
|
type: macro-f1 |
|
value: 63.62 |
|
- name: 5-shot |
|
type: macro-f1 |
|
value: 65.83 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_EN-RO |
|
type: WMT_EN-RO |
|
metrics: |
|
- name: 0-shot |
|
type: bleu |
|
value: 25.04 |
|
- name: 1-shot |
|
type: bleu |
|
value: 28.43 |
|
- name: 3-shot |
|
type: bleu |
|
value: 28.87 |
|
- name: 5-shot |
|
type: bleu |
|
value: 29.28 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: WMT_RO-EN |
|
type: WMT_RO-EN |
|
metrics: |
|
- name: 0-shot |
|
type: bleu |
|
value: 4.94 |
|
- name: 1-shot |
|
type: bleu |
|
value: 25.33 |
|
- name: 3-shot |
|
type: bleu |
|
value: 30.87 |
|
- name: 5-shot |
|
type: bleu |
|
value: 31.19 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD_EM |
|
type: XQuAD_EM |
|
metrics: |
|
- name: 0-shot |
|
type: exact_match |
|
value: 36.47 |
|
- name: 1-shot |
|
type: exact_match |
|
value: 26.22 |
|
- name: 3-shot |
|
type: exact_match |
|
value: 3.19 |
|
- name: 5-shot |
|
type: exact_match |
|
value: 5.13 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: XQuAD_F1 |
|
type: XQuAD_F1 |
|
metrics: |
|
- name: 0-shot |
|
type: f1 |
|
value: 56.83 |
|
- name: 1-shot |
|
type: f1 |
|
value: 38.53 |
|
- name: 3-shot |
|
type: f1 |
|
value: 6.88 |
|
- name: 5-shot |
|
type: f1 |
|
value: 10.19 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS_Spearman |
|
type: STS_Spearman |
|
metrics: |
|
- name: 1-shot |
|
type: spearman |
|
value: 70.61 |
|
- name: 3-shot |
|
type: spearman |
|
value: 73.53 |
|
- name: 5-shot |
|
type: spearman |
|
value: 77.73 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: STS_Pearson |
|
type: STS_Pearson |
|
metrics: |
|
- name: 1-shot |
|
type: pearson |
|
value: 72.28 |
|
- name: 3-shot |
|
type: pearson |
|
value: 74.46 |
|
- name: 5-shot |
|
type: pearson |
|
value: 78.75 |
|
|
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. |
|
|
|
|
|
- **Developed by:** OpenLLM-Ro |
|
<!-- - **Funded by [optional]:** [More Information Needed] --> |
|
<!-- - **Shared by [optional]:** [More Information Needed] --> |
|
<!-- - **Model type:** [More Information Needed] --> |
|
- **Language(s):** Romanian |
|
- **License:** cc-by-nc-4.0 |
|
- **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b) |
|
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel). |
|
|
|
|
|
### Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory |
|
- **Paper:** https://arxiv.org/abs/2406.18266 |
|
|
|
## Intended Use |
|
|
|
### Intended Use Cases |
|
|
|
RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. |
|
|
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28") |
|
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28") |
|
|
|
instruction = "Ce jocuri de societate pot juca cu prietenii mei?" |
|
chat = [ |
|
{"role": "user", "content": instruction}, |
|
] |
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") |
|
|
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs, max_new_tokens=128) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## Academic Benchmarks |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><strong><center>Average</center></strong></td> |
|
<td><strong><center>ARC</center></strong></td> |
|
<td><strong><center>MMLU</center></strong></td> |
|
<td><strong><center>Winogrande</center></strong></td> |
|
<td><strong><center>Hellaswag</center></strong></td> |
|
<td><strong><center>GSM8k</center></strong></td> |
|
<td><strong><center>TruthfulQA</center></strong></td> |
|
</tr> |
|
<tr> |
|
<td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em><strong>53.41</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em>54.44</em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em>31.06</em></center></td><td><center><em><strong>51.23</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center><strong>34.98</strong></center></td><td><center>40.45</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## Downstream tasks |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td></td> |
|
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td> |
|
<td colspan="4"><center><strong>WMT</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><center><strong>Binary<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Binary<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td> |
|
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td> |
|
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td> |
|
<td><center><strong>RO-EN<br>(Bleu)</strong></center> |
|
</tr> |
|
<tr> |
|
<td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em><strong>97.86</strong></em></center></td><td><center><em><strong>65.70</strong></em></center></td><td><center><em>98.43</em></center></td><td><center><em><strong>87.17</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td></td> |
|
<td colspan="4"><center><strong>XQuAD</strong></center></td> |
|
<td colspan="4"><center><strong>STS</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><center><strong>(EM)</strong></center></td> |
|
<td><center><strong>(F1)</strong></center></td> |
|
<td><center><strong>(EM)</strong></center></td> |
|
<td><center><strong>(F1)</strong></center></td> |
|
<td><center><strong>(Spearman)</strong></center></td> |
|
<td><center><strong>(Pearson)</strong></center></td> |
|
<td><center><strong>(Spearman)</strong></center></td> |
|
<td><center><strong>(Pearson)</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em>86.45</em></center></td><td><center><em>86.31</em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## MT-Bench |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><strong><center>Average</center></strong></td> |
|
<td><strong><center>1st turn</center></strong></td> |
|
<td><strong><center>2nd turn</center></strong></td> |
|
<td><strong><center>Answers in Ro</center></strong></td> |
|
</tr> |
|
<tr> |
|
<td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>5.26</em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em>4.60</em></center></td><td><center><em><strong>160/160</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.47</strong></center></td><td><center><strong>5.92</strong></center></td><td><center><strong>5.03</strong></center></td><td><center><strong>160/160</strong></center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## RoCulturaBench |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><strong><center>Average</center></strong></td> |
|
<td><strong><center>Answers in Ro</center></strong></td> |
|
</tr> |
|
<tr> |
|
<td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoGemma-7b-Instruct-2024-06-28</em></td><td><center><em>3.26</em></center></td><td><center><em><strong>100/100</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## RoGemma Model Family |
|
|
|
| Model | Link | |
|
|--------------------|:--------:| |
|
|*RoGemma-7b-Instruct-2024-06-28*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) | |
|
|RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) | |
|
|RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) | |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@misc{masala2024vorbecstiromanecsterecipetrain, |
|
title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, |
|
author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, |
|
year={2024}, |
|
eprint={2406.18266}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2406.18266}, |
|
} |
|
``` |
|
<!-- **APA:** |
|
|
|
[More Information Needed] --> |