<link rel="stylesheet" href="/front/build/kube-3189231/style.css" />
<link rel="preconnect" href="https://fonts.gstatic.com" />
<link
href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:ital,wght@0,200;0,300;0,400;0,600;0,700;0,900;1,200;1,300;1,400;1,600;1,700;1,900&display=swap"
rel="stylesheet"
/>
<link
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:wght@400;600;700&display=swap"
rel="stylesheet"
/>
<link
rel="preload"
href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.12.0/katex.min.css"
as="style"
onload="this.onload=null;this.rel='stylesheet'"
/>
<noscript>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.12.0/katex.min.css" />
</noscript>
<title>llama2/README.md · stabilityai/FreeWilly2 at main</title>
<script defer data-domain="huggingface.co" src="/js/script.js"></script>
</head>
<body class="flex flex-col min-h-screen bg-white dark:bg-gray-950 text-black ViewerBlobPage">
<div class="flex min-h-screen flex-col">
<div class="SVELTE_HYDRATER contents" data-props="{"isWide":false,"isZh":false}" data-target="MainHeader"><header class="border-b border-gray-100"><div class="w-full px-4 container flex h-16 items-center"><div class="flex flex-1 items-center"><a class="mr-5 flex flex-none items-center lg:mr-6" href="/"><img alt="Hugging Face's logo" class="w-7 md:mr-2" src="/front/assets/huggingface_logo-noborder.svg">
<span class="hidden whitespace-nowrap text-lg font-bold md:block">Hugging Face</span></a>
<div class="relative flex-1 lg:max-w-sm mr-2 sm:mr-4 lg:mr-6"><input autocomplete="off" class="w-full dark:bg-gray-950 pl-8 form-input-alt h-9 pr-3 focus:shadow-xl" name="" placeholder="Search models, datasets, users..." spellcheck="false" type="text" value="">
<svg class="absolute left-2.5 text-gray-400 top-1/2 transform -translate-y-1/2" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M30 28.59L22.45 21A11 11 0 1 0 21 22.45L28.59 30zM5 14a9 9 0 1 1 9 9a9 9 0 0 1-9-9z" fill="currentColor"></path></svg>
</div>
<div class="flex flex-none items-center justify-center p-0.5 place-self-stretch lg:hidden"><button class="relative z-30 flex h-6 w-8 items-center justify-center" type="button"><svg width="1em" height="1em" viewBox="0 0 10 10" class="text-xl" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" preserveAspectRatio="xMidYMid meet" fill="currentColor"><path fill-rule="evenodd" clip-rule="evenodd" d="M1.65039 2.9999C1.65039 2.8066 1.80709 2.6499 2.00039 2.6499H8.00039C8.19369 2.6499 8.35039 2.8066 8.35039 2.9999C8.35039 3.1932 8.19369 3.3499 8.00039 3.3499H2.00039C1.80709 3.3499 1.65039 3.1932 1.65039 2.9999ZM1.65039 4.9999C1.65039 4.8066 1.80709 4.6499 2.00039 4.6499H8.00039C8.19369 4.6499 8.35039 4.8066 8.35039 4.9999C8.35039 5.1932 8.19369 5.3499 8.00039 5.3499H2.00039C1.80709 5.3499 1.65039 5.1932 1.65039 4.9999ZM2.00039 6.6499C1.80709 6.6499 1.65039 6.8066 1.65039 6.9999C1.65039 7.1932 1.80709 7.3499 2.00039 7.3499H8.00039C8.19369 7.3499 8.35039 7.1932 8.35039 6.9999C8.35039 6.8066 8.19369 6.6499 8.00039 6.6499H2.00039Z"></path></svg>
</button>
</div></div>
<nav aria-label="Main" class="ml-auto hidden lg:block"><ul class="flex items-center space-x-2"><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-indigo-700" href="/models"><svg class="mr-1.5 text-gray-400 group-hover:text-indigo-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-quaternary" d="M20.23 7.24L12 12L3.77 7.24a1.98 1.98 0 0 1 .7-.71L11 2.76c.62-.35 1.38-.35 2 0l6.53 3.77c.29.173.531.418.7.71z" opacity=".25" fill="currentColor"></path><path class="uim-tertiary" d="M12 12v9.5a2.09 2.09 0 0 1-.91-.21L4.5 17.48a2.003 2.003 0 0 1-1-1.73v-7.5a2.06 2.06 0 0 1 .27-1.01L12 12z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M20.5 8.25v7.5a2.003 2.003 0 0 1-1 1.73l-6.62 3.82c-.275.13-.576.198-.88.2V12l8.23-4.76c.175.308.268.656.27 1.01z" fill="currentColor"></path></svg>
Models</a>
</li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-red-700" href="/datasets"><svg class="mr-1.5 text-gray-400 group-hover:text-red-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 25 25"><ellipse cx="12.5" cy="5" fill="currentColor" fill-opacity="0.25" rx="7.5" ry="2"></ellipse><path d="M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z" fill="currentColor" opacity="0.5"></path><path d="M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z" fill="currentColor" opacity="0.5"></path><path d="M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z" fill="currentColor"></path></svg>
Datasets</a>
</li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-blue-700" href="/spaces"><svg class="mr-1.5 text-gray-400 group-hover:text-blue-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 25 25"><path opacity=".5" d="M6.016 14.674v4.31h4.31v-4.31h-4.31ZM14.674 14.674v4.31h4.31v-4.31h-4.31ZM6.016 6.016v4.31h4.31v-4.31h-4.31Z" fill="currentColor"></path><path opacity=".75" fill-rule="evenodd" clip-rule="evenodd" d="M3 4.914C3 3.857 3.857 3 4.914 3h6.514c.884 0 1.628.6 1.848 1.414a5.171 5.171 0 0 1 7.31 7.31c.815.22 1.414.964 1.414 1.848v6.514A1.914 1.914 0 0 1 20.086 22H4.914A1.914 1.914 0 0 1 3 20.086V4.914Zm3.016 1.102v4.31h4.31v-4.31h-4.31Zm0 12.968v-4.31h4.31v4.31h-4.31Zm8.658 0v-4.31h4.31v4.31h-4.31Zm0-10.813a2.155 2.155 0 1 1 4.31 0 2.155 2.155 0 0 1-4.31 0Z" fill="currentColor"></path><path opacity=".25" d="M16.829 6.016a2.155 2.155 0 1 0 0 4.31 2.155 2.155 0 0 0 0-4.31Z" fill="currentColor"></path></svg>
Spaces</a>
</li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-yellow-700" href="/docs"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="mr-1.5 text-gray-400 group-hover:text-yellow-500" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path opacity="0.5" d="M20.9022 5.10334L10.8012 10.8791L7.76318 9.11193C8.07741 8.56791 8.5256 8.11332 9.06512 7.7914L15.9336 3.73907C17.0868 3.08811 18.5002 3.26422 19.6534 3.91519L19.3859 3.73911C19.9253 4.06087 20.5879 4.56025 20.9022 5.10334Z" fill="currentColor"></path><path d="M10.7999 10.8792V28.5483C10.2136 28.5475 9.63494 28.4139 9.10745 28.1578C8.5429 27.8312 8.074 27.3621 7.74761 26.7975C7.42122 26.2327 7.24878 25.5923 7.24756 24.9402V10.9908C7.25062 10.3319 7.42358 9.68487 7.74973 9.1123L10.7999 10.8792Z" fill="currentColor" fill-opacity="0.75"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M21.3368 10.8499V6.918C21.3331 6.25959 21.16 5.61234 20.8346 5.03949L10.7971 10.8727L10.8046 10.874L21.3368 10.8499Z" fill="currentColor"></path><path opacity="0.5" d="M21.7937 10.8488L10.7825 10.8741V28.5486L21.7937 28.5234C23.3344 28.5234 24.5835 27.2743 24.5835 25.7335V13.6387C24.5835 12.0979 23.4365 11.1233 21.7937 10.8488Z" fill="currentColor"></path></svg>
Docs</a>
</li>
<li><div class="relative ">
<button class="px-2 py-0.5 group hover:text-green-700 dark:hover:text-gray-400 flex items-center " type="button">
<svg class="mr-1.5 text-gray-400 group-hover:text-green-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-tertiary" d="M19 6H5a3 3 0 0 0-3 3v2.72L8.837 14h6.326L22 11.72V9a3 3 0 0 0-3-3z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M10 6V5h4v1h2V5a2.002 2.002 0 0 0-2-2h-4a2.002 2.002 0 0 0-2 2v1h2zm-1.163 8L2 11.72V18a3.003 3.003 0 0 0 3 3h14a3.003 3.003 0 0 0 3-3v-6.28L15.163 14H8.837z" fill="currentColor"></path></svg>
Solutions
</button>
</div></li>
<li><a class="group flex items-center px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-400" href="/pricing">Pricing
</a></li>
<li><div class="relative group">
<button class="px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-600 flex items-center " type="button">
<svg class="mr-1.5 text-gray-500 w-5 group-hover:text-gray-400 dark:text-gray-300 dark:group-hover:text-gray-400" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 18" preserveAspectRatio="xMidYMid meet"><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 3.30221C14.4504 2.836 14.8284 2.45807 15.2946 2.45807H28.4933C28.9595 2.45807 29.3374 2.836 29.3374 3.30221C29.3374 3.76842 28.9595 4.14635 28.4933 4.14635H15.2946C14.8284 4.14635 14.4504 3.76842 14.4504 3.30221Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 9.00002C14.4504 8.53382 14.8284 8.15588 15.2946 8.15588H28.4933C28.9595 8.15588 29.3374 8.53382 29.3374 9.00002C29.3374 9.46623 28.9595 9.84417 28.4933 9.84417H15.2946C14.8284 9.84417 14.4504 9.46623 14.4504 9.00002Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 14.6978C14.4504 14.2316 14.8284 13.8537 15.2946 13.8537H28.4933C28.9595 13.8537 29.3374 14.2316 29.3374 14.6978C29.3374 15.164 28.9595 15.542 28.4933 15.542H15.2946C14.8284 15.542 14.4504 15.164 14.4504 14.6978Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M1.94549 6.87377C2.27514 6.54411 2.80962 6.54411 3.13928 6.87377L6.23458 9.96907L9.32988 6.87377C9.65954 6.54411 10.194 6.54411 10.5237 6.87377C10.8533 7.20343 10.8533 7.73791 10.5237 8.06756L6.23458 12.3567L1.94549 8.06756C1.61583 7.73791 1.61583 7.20343 1.94549 6.87377Z" fill="currentColor"></path></svg>
</button>
</div></li>
<li><hr class="h-5 w-0.5 border-none bg-gray-100 dark:bg-gray-800"></li>
<li><a class="block cursor-pointer px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-400" href="/login">Log In
</a></li>
<li><a class="btn ml-2" href="/join">Sign Up </a></li></ul></nav></div></header></div>
<div class="SVELTE_HYDRATER contents" data-props="{}" data-target="GoogleAnalyticsTracker"></div>
<div class="SVELTE_HYDRATER contents" data-props="{}" data-target="SSOBanner"></div>
<main class="flex flex-1 flex-col"><div class="SVELTE_HYDRATER contents" data-props="{"activeTab":"files","author":{"avatarUrl":"https://aeiljuispo.cloudimg.io/v7//static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F643feeb67bc3fbde1385cc25%2F7vmYr2XwVcPtkLzac_jxQ.png%3Fw%3D200%26amp%3Bamp%3Bh%3D200%26amp%3Bamp%3Bf%3Dface%26amp%3Bquot%3B%2C%26amp%3Bquot%3Bfullname%26amp%3Bquot%3B%3A%26amp%3Bquot%3BStability AI","name":"stabilityai","type":"org","isHf":false},"canReadRepoSettings":false,"canWriteRepoContent":false,"canDisable":false,"model":{"author":"stabilityai","cardData":{"license":"cc-by-nc-4.0","datasets":["conceptofmind/cot_submix_original","conceptofmind/flan2021_submix_original","conceptofmind/t0_submix_original","conceptofmind/niv2_submix_original"],"language":["en"],"pipeline_tag":"text-generation"},"cardExists":true,"config":{"architectures":["LlamaForCausalLM"],"model_type":"llama"},"discussionsDisabled":false,"downloads":592,"downloadsAllTime":592,"id":"stabilityai/FreeWilly2","isLikedByUser":false,"isWatchedByUser":false,"inference":true,"lastModified":"2023-07-21T19:43:16.000Z","likes":283,"pipeline_tag":"text-generation","library_name":"transformers","model-index":null,"private":false,"repoType":"model","gated":false,"pwcLink":{"error":"Unknown error, can't generate link to Papers With Code."},"tags":["pytorch","llama","text-generation","en","dataset:conceptofmind/cot_submix_original","dataset:conceptofmind/flan2021_submix_original","dataset:conceptofmind/t0_submix_original","dataset:conceptofmind/niv2_submix_original","arxiv:2307.09288","arxiv:2306.02707","transformers","license:cc-by-nc-4.0","has_space","text-generation-inference","region:us"],"tag_objs":[{"id":"text-generation","label":"Text Generation","subType":"nlp","type":"pipeline_tag"},{"id":"pytorch","label":"PyTorch","type":"library"},{"id":"transformers","label":"Transformers","type":"library"},{"id":"dataset:conceptofmind/cot_submix_original","label":"conceptofmind/cot_submix_original","type":"dataset","disabled":false},{"id":"dataset:conceptofmind/flan2021_submix_original","label":"conceptofmind/flan2021_submix_original","type":"dataset","disabled":false},{"id":"dataset:conceptofmind/t0_submix_original","label":"conceptofmind/t0_submix_original","type":"dataset","disabled":false},{"id":"dataset:conceptofmind/niv2_submix_original","label":"conceptofmind/niv2_submix_original","type":"dataset","disabled":false},{"id":"en","label":"en","type":"language"},{"id":"llama","label":"llama","type":"other"},{"id":"has_space","label":"Has a Space","type":"other"},{"id":"text-generation-inference","label":"text-generation-inference","type":"other"},{"id":"arxiv:2307.09288","label":"arxiv:2307.09288","type":"arxiv"},{"id":"arxiv:2306.02707","label":"arxiv:2306.02707","type":"arxiv"},{"id":"license:cc-by-nc-4.0","label":"cc-by-nc-4.0","type":"license"},{"type":"region","label":"🇺🇸 Region: US","id":"region:us"}],"hasHandlerPy":false,"transformersInfo":{"auto_model":"AutoModelForCausalLM","pipeline_tag":"text-generation","processor":"AutoTokenizer"},"widgetData":[{"text":"My name is Julien and I like to"},{"text":"My name is Thomas and my main"},{"text":"My name is Mariama, my favorite"},{"text":"My name is Clara and I am"},{"text":"My name is Lewis and I like to"},{"text":"My name is Merve and my favorite"},{"text":"My name is Teven and I am"},{"text":"Once upon a time,"}]},"discussionsStats":{"closed":3,"open":6,"total":9}}" data-target="ModelHeader"><header class="from-gray-50-to-white border-b border-gray-100 bg-gradient-to-t via-white dark:via-gray-950 pt-6 sm:pt-9"><div class="container relative "><h1 class="flex flex-wrap items-center leading-tight mb-3 text-lg md:text-xl">
<div class="group flex flex-none items-center"><div class="relative mr-1.5 flex items-center">
<img alt="" class="w-3.5 h-3.5 rounded " src="https://aeiljuispo.cloudimg.io/v7//static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F643feeb67bc3fbde1385cc25%2F7vmYr2XwVcPtkLzac_jxQ.png%3Fw%3D200%26amp%3Bamp%3Bh%3D200%26amp%3Bamp%3Bf%3Dface"></div>
<a href="/stabilityai" class="text-gray-400 hover:text-blue-600">stabilityai</a>
<div class="mx-0.5 text-gray-300">/</div></div>
</div></div>
<div class="mb-2 flex items-center overflow-hidden"><a class="truncate text-gray-800 hover:underline" href="/stabilityai/FreeWilly2/tree/main">FreeWilly2</a>
<span class="mx-1 text-gray-300">/</span>
<a class="truncate hover:underline dark:text-gray-300" href="/stabilityai/FreeWilly2/tree/main/llama2">llama2
</a>
<span class="mx-1 text-gray-300">/</span><span class="dark:text-gray-300">README.md</span></div></div>
</header>
<div class="SVELTE_HYDRATER contents" data-props="{"commitLast":{"date":"2023-07-21T18:19:47.000Z","subject":"add llama2 licenses, notice, readme, and use_policy","authors":[{"_id":"6303c92f1dd5d3c624839851","avatar":"https://aeiljuispo.cloudimg.io/v7//static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F1673820367309-6303c92f1dd5d3c624839851.png%3Fw%3D200%26amp%3Bamp%3Bh%3D200%26amp%3Bamp%3Bf%3Dface%26amp%3Bquot%3B%2C%26amp%3Bquot%3BisHf%26amp%3Bquot%3B%3Afalse%2C%26amp%3Bquot%3Buser%26amp%3Bquot%3B%3A%26amp%3Bquot%3Bdmayhem93%26amp%3Bquot%3B%7D%5D%2C%26amp%3Bquot%3Bcommit%26amp%3Bquot%3B%3A%7B%26amp%3Bquot%3Bid%26amp%3Bquot%3B%3A%26amp%3Bquot%3Bad7e1515765988c03c04a97be346b7474b201e01%26amp%3Bquot%3B%2C%26amp%3Bquot%3BparentIds%26amp%3Bquot%3B%3A%5B%26amp%3Bquot%3Be4944caa6ece819413b140b8dcecea79fe7e22cf%26amp%3Bquot%3B%5D%7D%2C%26amp%3Bquot%3Btitle%26amp%3Bquot%3B%3A%26amp%3Bquot%3Badd llama2 licenses, notice, readme, and use_policy"},"repo":{"name":"stabilityai/FreeWilly2","type":"model"}}" data-target="LastCommit"><div class="from-gray-100-to-white flex items-baseline rounded-t-lg border border-b-0 bg-gradient-to-t px-3 py-2 dark:border-gray-800"><img class="mt-0.5 mr-2.5 h-4 w-4 self-center rounded-full" alt="dmayhem93's picture" src="https://aeiljuispo.cloudimg.io/v7//static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F1673820367309-6303c92f1dd5d3c624839851.png%3Fw%3D200%26amp%3Bamp%3Bh%3D200%26amp%3Bamp%3Bf%3Dface">
<div class="mr-5 flex flex-none items-center truncate"><a class="hover:underline" href="/dmayhem93">dmayhem93
</a>
</div>
<div class="mr-4 truncate font-mono text-sm text-gray-500 hover:prose-a:underline"><!-- HTML_TAG_START -->add llama2 licenses, notice, readme, and use_policy<!-- HTML_TAG_END --></div>
<a class="rounded border bg-gray-50 px-1.5 text-sm hover:underline dark:border-gray-800 dark:bg-gray-900" href="/stabilityai/FreeWilly2/commit/ad7e1515765988c03c04a97be346b7474b201e01">ad7e151</a>
<time class="ml-auto hidden flex-none truncate pl-2 text-gray-500 dark:text-gray-400 lg:block" datetime="2023-07-21T18:19:47" title="Fri, 21 Jul 2023 18:19:47 GMT">3 days ago</time></div></div>
<div class="flex flex-wrap items-center border px-3 py-1.5 text-sm text-gray-800 dark:border-gray-800 dark:bg-gray-900"><div class="flex items-center gap-3 text-sm font-medium"><a class="rounded-md px-1.5 capitalize bg-gray-200 dark:bg-gray-800" href="/stabilityai/FreeWilly2/blob/main/llama2/README.md">preview</a>
<a class="rounded-md px-1.5 capitalize " href="/stabilityai/FreeWilly2/blob/main/llama2/README.md?code=true">code</a></div>
<div class="mx-4 text-gray-200">|</div>
<a class="my-1 mr-4 flex items-center hover:underline " href="/stabilityai/FreeWilly2/raw/main/llama2/README.md"><svg class="mr-1.5" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);"><path d="M31 16l-7 7l-1.41-1.41L28.17 16l-5.58-5.59L24 9l7 7z" fill="currentColor"></path><path d="M1 16l7-7l1.41 1.41L3.83 16l5.58 5.59L8 23l-7-7z" fill="currentColor"></path><path d="M12.419 25.484L17.639 6l1.932.518L14.35 26z" fill="currentColor"></path></svg>
raw
</a><a class="my-1 mr-4 flex items-center hover:underline " href="/stabilityai/FreeWilly2/commits/main/llama2/README.md"><svg class="mr-1.5" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);"><path d="M16 4C9.383 4 4 9.383 4 16s5.383 12 12 12s12-5.383 12-12S22.617 4 16 4zm0 2c5.535 0 10 4.465 10 10s-4.465 10-10 10S6 21.535 6 16S10.465 6 16 6zm-1 2v9h7v-2h-5V8z" fill="currentColor"></path></svg>
history
</a><a class="my-1 mr-4 flex items-center hover:underline " href="/stabilityai/FreeWilly2/blame/main/llama2/README.md"><svg class="mr-1.5" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);"><path d="M16 2a14 14 0 1 0 14 14A14 14 0 0 0 16 2zm0 26a12 12 0 1 1 12-12a12 12 0 0 1-12 12z" fill="currentColor"></path><path d="M11.5 11a2.5 2.5 0 1 0 2.5 2.5a2.48 2.48 0 0 0-2.5-2.5z" fill="currentColor"></path><path d="M20.5 11a2.5 2.5 0 1 0 2.5 2.5a2.48 2.48 0 0 0-2.5-2.5z" fill="currentColor"></path></svg>
blame
</a><a class="my-1 mr-4 flex items-center hover:underline text-green-600 dark:text-gray-300" href="/stabilityai/FreeWilly2/edit/main/llama2/README.md"><svg class="mr-1.5" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M2 26h28v2H2z" fill="currentColor"></path><path d="M25.4 9c.8-.8.8-2 0-2.8l-3.6-3.6c-.8-.8-2-.8-2.8 0l-15 15V24h6.4l15-15zm-5-5L24 7.6l-3 3L17.4 7l3-3zM6 22v-3.6l10-10l3.6 3.6l-10 10H6z" fill="currentColor"></path></svg>
contribute
</a><a class="my-1 mr-4 flex items-center hover:underline " href="/stabilityai/FreeWilly2/delete/main/llama2/README.md"><svg class="mr-1.5" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M12 12h2v12h-2z" fill="currentColor"></path><path d="M18 12h2v12h-2z" fill="currentColor"></path><path d="M4 6v2h2v20a2 2 0 0 0 2 2h16a2 2 0 0 0 2-2V8h2V6zm4 22V8h16v20z" fill="currentColor"></path><path d="M12 2h8v2h-8z" fill="currentColor"></path></svg>
delete
</a>
<div class="mr-4 flex items-center text-gray-400"><svg class="text-gray-300 text-sm mr-1.5 -translate-y-px" width="1em" height="1em" viewBox="0 0 22 28" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M15.3634 10.3639C15.8486 10.8491 15.8486 11.6357 15.3634 12.1209L10.9292 16.5551C10.6058 16.8785 10.0814 16.8785 9.7579 16.5551L7.03051 13.8277C6.54532 13.3425 6.54532 12.5558 7.03051 12.0707C7.51569 11.5855 8.30234 11.5855 8.78752 12.0707L9.7579 13.041C10.0814 13.3645 10.6058 13.3645 10.9292 13.041L13.6064 10.3639C14.0916 9.8787 14.8782 9.8787 15.3634 10.3639Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M10.6666 27.12C4.93329 25.28 0 19.2267 0 12.7867V6.52001C0 5.40001 0.693334 4.41334 1.73333 4.01334L9.73333 1.01334C10.3333 0.786673 11 0.786673 11.6 1.02667L19.6 4.02667C20.1083 4.21658 20.5465 4.55701 20.8562 5.00252C21.1659 5.44803 21.3324 5.97742 21.3333 6.52001V12.7867C21.3333 19.24 16.4 25.28 10.6666 27.12Z" fill="currentColor" fill-opacity="0.22"></path><path d="M10.0845 1.94967L10.0867 1.94881C10.4587 1.8083 10.8666 1.81036 11.2286 1.95515L11.2387 1.95919L11.2489 1.963L19.2489 4.963L19.25 4.96342C19.5677 5.08211 19.8416 5.29488 20.0351 5.57333C20.2285 5.85151 20.3326 6.18203 20.3333 6.52082C20.3333 6.52113 20.3333 6.52144 20.3333 6.52176L20.3333 12.7867C20.3333 18.6535 15.8922 24.2319 10.6666 26.0652C5.44153 24.2316 1 18.6409 1 12.7867V6.52001C1 5.82357 1.42893 5.20343 2.08883 4.94803L10.0845 1.94967Z" stroke="currentColor" stroke-opacity="0.30" stroke-width="2"></path></svg>
No virus
</div>
<div class="dark:text-gray-300 sm:ml-auto">10.4 kB</div></div>
<div class="relative min-h-[100px] rounded-b-lg border border-t-0 leading-tight dark:border-gray-800 dark:bg-gray-925">
<div class="py-4 px-4 sm:px-6 prose hf-sanitized hf-sanitized-pYkYeN0i3yUdt_-zoU6hz"><div class="not-prose -mx-6 mb-8 -mt-4 max-h-[300px] min-w-full overflow-auto border-b bg-gradient-to-t from-gray-50 px-6 pt-4 pb-5 font-mono text-xs transition-all dark:from-gray-900 dark:to-gray-950"><div class="mb-2 inline-block rounded-lg border px-2 py-1 font-mono text-xs leading-none">metadata</div>
<pre><!-- HTML_TAG_START --><span class="hljs-attr">extra_gated_heading:</span> <span class="hljs-string">Access</span> <span class="hljs-string">Llama</span> <span class="hljs-number">2</span> <span class="hljs-string">on</span> <span class="hljs-string">Hugging</span> <span class="hljs-string">Face</span>
extra_gated_description: >- This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the Meta website and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_prompt: >- Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved. extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2
<!-- HTML_TAG_START --><h1 class="relative group flex items-center">
<a rel="noopener nofollow" href="#llama-2" class="block pr-1.5 text-lg md:absolute md:p-1.5 md:opacity-0 md:group-hover:opacity-100 md:right-full" id="llama-2">
<span class="header-link"><svg viewBox="0 0 256 256" preserveAspectRatio="xMidYMid meet" height="1em" width="1em" role="img" aria-hidden="true" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" class="text-gray-500 hover:text-black w-4"><path fill="currentColor" d="M167.594 88.393a8.001 8.001 0 0 1 0 11.314l-67.882 67.882a8 8 0 1 1-11.314-11.315l67.882-67.881a8.003 8.003 0 0 1 11.314 0zm-28.287 84.86l-28.284 28.284a40 40 0 0 1-56.567-56.567l28.284-28.284a8 8 0 0 0-11.315-11.315l-28.284 28.284a56 56 0 0 0 79.196 79.197l28.285-28.285a8 8 0 1 0-11.315-11.314zM212.852 43.14a56.002 56.002 0 0 0-79.196 0l-28.284 28.284a8 8 0 1 0 11.314 11.314l28.284-28.284a40 40 0 0 1 56.568 56.567l-28.285 28.285a8 8 0 0 0 11.315 11.314l28.284-28.284a56.065 56.065 0 0 0 0-79.196z"></path></svg></span>
</a>
<span>
<strong>Llama 2</strong>
</span>
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 70B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
Model Details
Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the website and accept our License before requesting access here.
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
Model Developers Meta
Variations Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
Input Models input text only.
Output Models generate text only.
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
</thead><tbody><tr>
Training Data | Params | Content Length | GQA | Tokens | LR | |
---|---|---|---|---|---|---|
Llama 2 | A new mix of publicly available online data | 7B | 4k | ✗ | 2.0T | 3.0 x 10-4 |
Llama 2 | A new mix of publicly available online data | 13B | 4k | ✗ | 2.0T | 3.0 x 10-4 |
Llama 2 | A new mix of publicly available online data | 70B | 4k | ✔ | 2.0T | 1.5 x 10-4 |
Llama 2 family of models. Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
Model Dates Llama 2 was trained between January 2023 and July 2023.
Status This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
License A custom commercial license is available at: https://ai.meta.com/resources/models-and-libraries/llama-downloads/
Research Paper "Llama-2: Open Foundation and Fine-tuned Chat Models"
Intended Use
Intended Use Cases Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the INST
and <<SYS>>
tags, BOS
and EOS
tokens, and the whitespaces and breaklines in between (we recommend calling strip()
on inputs to avoid double-spaces). See our reference code in github for details: chat_completion
.
Out-of-scope Uses Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
Hardware and Software
Training Factors We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
Carbon Footprint Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
</thead><tbody><tr>
Time (GPU hours) | Power Consumption (W) | Carbon Emitted(tCO2eq) | |
---|---|---|---|
Llama 2 7B | 184320 | 400 | 31.22 |
Llama 2 13B | 368640 | 400 | 62.44 |
Llama 2 70B | 1720320 | 400 | 291.42 |
Total | 3311616 | 539.00 |
CO2 emissions during pretraining. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
Training Data
Overview Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
Data Freshness The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
</thead><tbody><tr>
Model | Size | Code | Commonsense Reasoning | World Knowledge | Reading Comprehension | Math | MMLU | BBH | AGI Eval |
---|---|---|---|---|---|---|---|---|---|
Llama 1 | 7B | 14.1 | 60.8 | 46.2 | 58.5 | 6.95 | 35.1 | 30.3 | 23.9 |
Llama 1 | 13B | 18.9 | 66.1 | 52.6 | 62.3 | 10.9 | 46.9 | 37.0 | 33.9 |
Llama 1 | 33B | 26.0 | 70.0 | 58.4 | 67.6 | 21.4 | 57.8 | 39.8 | 41.7 |
Llama 1 | 65B | 30.7 | 70.7 | 60.5 | 68.6 | 30.8 | 63.4 | 43.5 | 47.6 |
Llama 2 | 7B | 16.8 | 63.9 | 48.9 | 61.3 | 14.6 | 45.3 | 32.6 | 29.3 |
Llama 2 | 13B | 24.5 | 66.9 | 55.4 | 65.8 | 28.7 | 54.8 | 39.4 | 39.1 |
Llama 2 | 70B | 37.5 | 71.9 | 63.6 | 69.4 | 35.2 | 68.9 | 51.2 | 54.2 |
Overall performance on grouped academic benchmarks. Code: We report the average pass@1 scores of our models on HumanEval and MBPP. Commonsense Reasoning: We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. World Knowledge: We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. Reading Comprehension: For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. MATH: We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
</thead><tbody><tr>
TruthfulQA | Toxigen | ||
---|---|---|---|
Llama 1 | 7B | 27.42 | 23.00 |
Llama 1 | 13B | 41.74 | 23.08 |
Llama 1 | 33B | 44.19 | 22.57 |
Llama 1 | 65B | 48.71 | 21.77 |
Llama 2 | 7B | 33.29 | 21.25 |
Llama 2 | 13B | 41.86 | 26.10 |
Llama 2 | 70B | 50.18 | 24.60 |
Evaluation of pretrained LLMs on automatic safety benchmarks. For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
</thead><tbody><tr>
TruthfulQA | Toxigen | ||
---|---|---|---|
Llama-2-Chat | 7B | 57.04 | 0.00 |
Llama-2-Chat | 13B | 62.18 | 0.00 |
Llama-2-Chat | 70B | 64.14 | 0.01 |
Evaluation of fine-tuned LLMs on different safety datasets. Same metric definitions as above.
Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: github.com/facebookresearch/llama
- Reporting problematic content generated by the model: developers.facebook.com/llama_output_feedback
- Reporting bugs and security concerns: facebook.com/whitehat/info
Llama Model Index
</thead><tbody><tr>
Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf |
---|---|---|---|---|
7B | Link | Link | Link | Link |
13B | Link | Link | Link | Link |
70B | Link | Link | Link | Link |
<script>
import("/front/build/kube-3189231/index.js");
window.moonSha = "kube-3189231/";
window.hubConfig = JSON.parse(`{"features":{"signupDisabled":false,"awsMarketplace":false},"sshGitUrl":"[email protected]","moonHttpUrl":"https://huggingface.co","captchaApiKey":"bd5f2066-93dc-4bdd-a64b-a24646ca3859","stripePublicKey":"pk_live_x2tdjFXBCvXo2FFmMybezpeM00J6gPCAAc","environment":"production","userAgent":"HuggingFace (production)"}`);
</script>
<!-- Stripe -->
<script>
if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
const script = document.createElement("script");
script.src = "https://js.stripe.com/v3/";
script.async = true;
document.head.appendChild(script);
}
</script>
<!-- Google analytics v4 -->
<script>
if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
const script = document.createElement("script");
script.src = "https://www.googletagmanager.com/gtag/js?id=G-8Q63TH4CSL";
script.async = true;
document.head.appendChild(script);
window.dataLayer = window.dataLayer || [];
function gtag() {
if (window.dataLayer !== undefined) {
window.dataLayer.push(arguments);
}
}
gtag("js", new Date());
gtag("config", "G-8Q63TH4CSL", { page_path: "/stabilityai/FreeWilly2/blob/main/llama2/README.md" });
/// ^ See https://developers.google.com/analytics/devguides/collection/gtagjs/pages
gtag("consent", "default", { ad_storage: "denied", analytics_storage: "denied" });
/// ^ See https://developers.google.com/tag-platform/gtagjs/reference#consent
/// TODO: ask the user for their consent and update this with gtag('consent', 'update')
}
</script>
<!-- Google Analytics v3 (deprecated) -->
<script>
if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
(function (i, s, o, g, r, a, m) {
i["GoogleAnalyticsObject"] = r;
(i[r] =
i[r] ||
function () {
(i[r].q = i[r].q || []).push(arguments);
}),
(i[r].l = 1 * new Date());
(a = s.createElement(o)), (m = s.getElementsByTagName(o)[0]);
a.async = 1;
a.src = g;
m.parentNode.insertBefore(a, m);
})(window, document, "script", "https://www.google-analytics.com/analytics.js", "ganalytics");
ganalytics("create", "UA-83738774-2", "auto");
ganalytics("send", "pageview", "/stabilityai/FreeWilly2/blob/main/llama2/README.md");
}
</script>
</body>