π€ HF Repo β’π± Github Repo
Approximate Performance Evaluation
The following models are all trained and evaluated on a single RTX 3090 GPU.
Cantonese Test Results Comparison
MDCC
Model name | Parameters | Finetune Steps | Time Spend | Training Loss | Validation Loss | CER % | Finetuned Model |
---|---|---|---|---|---|---|---|
whisper-tiny-cantonese | 39 M | 3200 | 4h 34m | 0.0485 | 0.771 | 11.10 | Link |
whisper-base-cantonese | 74 M | 7200 | 13h 32m | 0.0186 | 0.477 | 7.66 | Link |
whisper-small-cantonese | 244 M | 3600 | 6h 38m | 0.0266 | 0.137 | 6.16 | Link |
whisper-small-lora-cantonese | 3.5 M | 8000 | 21h 27m | 0.0687 | 0.382 | 7.40 | Link |
whisper-large-v2-lora-cantonese | 15 M | 10000 | 33h 40m | 0.0046 | 0.277 | 3.77 | Link |
Common Voice Corpus 11.0
Model name | Original CER % | w/o Finetune CER % | Jointly Finetune CER % |
---|---|---|---|
whisper-tiny-cantonese | 124.03 | 66.85 | 35.87 |
whisper-base-cantonese | 78.24 | 61.42 | 16.73 |
whisper-small-cantonese | 52.83 | 31.23 | / |
whisper-small-lora-cantonese | 37.53 | 19.38 | 14.73 |
whisper-large-v2-lora-cantonese | 37.53 | 19.38 | 9.63 |
- Downloads last month
- 49
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.