ljcc's picture
Update README.md
1c8bd8a verified
---
license: mit
datasets:
- locuslab/TOFU
language:
- en
base_model:
- NousResearch/Llama-2-7b-chat-hf
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
---
# Origin Model on Task "TOFU"
## Model Details
- **Training**:
- **Task**: [🤗datasets/locuslab/TOFU](https://huggingface.co/datasets/locuslab/TOFU)
- **Method**: Fine tune
- **Base Model**: [🤗NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf)
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
- **Research Paper**:
- ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)
- ["TOFU: A Task of Fictitious Unlearning for LLMs"](https://arxiv.org/abs/2401.06121)
## Loading the Model
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/TOFU-origin-Llama-2-7b-chat", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
```
## Citation
If you use this model in your research, please cite:
```
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
```
## Reporting Issues
Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)