image-captioning-output
This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5164
- Rouge1: 35.5267
- Rouge2: 12.254
- Rougel: 32.968
- Rougelsum: 32.9723
- Gen Len: 12.395
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.5193 | 0.25 | 500 | 0.5171 | 33.0319 | 10.364 | 30.6939 | 30.6888 | 12.1 |
0.4842 | 0.5 | 1000 | 0.5102 | 33.7318 | 10.8199 | 31.1842 | 31.18 | 11.3 |
0.4724 | 0.75 | 1500 | 0.5028 | 34.6981 | 11.4074 | 31.9128 | 31.9158 | 12.02 |
0.4632 | 1.0 | 2000 | 0.5012 | 35.9443 | 12.8742 | 33.4061 | 33.377 | 11.04 |
0.377 | 1.25 | 2500 | 0.5026 | 35.7745 | 12.2309 | 33.3234 | 33.3353 | 11.735 |
0.3819 | 1.5 | 3000 | 0.5018 | 36.0145 | 13.0296 | 33.5985 | 33.6182 | 12.285 |
0.3788 | 1.75 | 3500 | 0.5030 | 35.9016 | 12.5276 | 33.4995 | 33.5033 | 11.305 |
0.3654 | 2.0 | 4000 | 0.5020 | 36.2476 | 12.945 | 33.6453 | 33.6595 | 11.9 |
0.3102 | 2.25 | 4500 | 0.5146 | 36.1507 | 13.0072 | 33.3889 | 33.3786 | 12.305 |
0.3137 | 2.5 | 5000 | 0.5166 | 35.7413 | 12.5693 | 33.2646 | 33.2508 | 12.71 |
0.3111 | 2.75 | 5500 | 0.5171 | 35.5658 | 12.511 | 33.0581 | 33.0518 | 12.55 |
0.3023 | 3.0 | 6000 | 0.5164 | 35.5267 | 12.254 | 32.968 | 32.9723 | 12.395 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for NourFakih/image-captioning-output
Base model
nlpconnect/vit-gpt2-image-captioning