Nan-Do's picture
Updated template
db60b26
---
base_model: Nan-Do/LeetCodeWizard_7B_V1.1
inference: false
language:
- en
license: llama2
model-index:
- name: LeetCodeWizard_7B_V1.1
results: []
model_creator: Nan-Do
model_name: LeetCodeWizard 7B V1.1
model_type: codellama
prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:'
quantized_by: Nan-Do
tags:
- codellama
- instruct
- finetune
- leetcode
- problem solving
---
<!-- markdownlint-disable MD041 -->
# LeetCodeWizard 7B V1.1 - GGUF
- Original model: [LeetCodeWizard 7B V1.1](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1)
<!-- description start -->
## Description
This repo contains GGUF format model files for [LeetCodeWizard 7B V1.1](https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0). (model template inspired by [TheBloke](https://huggingface.co/TheBloke))
## Prompt template: Alpaca
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quantisation method | Bits | Size |
| ---- | :----: | ----: | ----: |
| [LeetCodeWizard_7B_V1.1.Q3_K.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q3_K.gguf) | Q3_K | 3 | 3.3 GB|
| [LeetCodeWizard_7B_V1.1.Q4_0.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB|
| [LeetCodeWizard_7B_V1.1.Q4_1.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q4_1.gguf) | Q4_1 | 4 | 4.24 GB|
| [LeetCodeWizard_7B_V1.1.Q5_0.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB|
| [LeetCodeWizard_7B_V1.1.Q5_1.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q5_1.gguf) | Q5_1 | 5 | 5.06 GB|
| [LeetCodeWizard_7B_V1.1.Q6_K.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q6_K.gguf) | Q6_K | 6 | 5.53 GB|
| [LeetCodeWizard_7B_V1.1.Q8_0.gguf](https://huggingface.co/Nan-Do/LeetCodeWizard_7B_V1.1-GGUF/resolve/main/LeetCodeWizard_7B_V1.1.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB|
<!-- original-model-card end -->