metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: NLPmonster/layoutlmv3-for-receipt-understanding
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-for-complete-receipt-understanding
results: []
layoutlmv3-for-complete-receipt-understanding
This model is a fine-tuned version of NLPmonster/layoutlmv3-for-receipt-understanding on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4421
- Precision: 0.6502
- Recall: 0.6607
- F1: 0.6554
- Accuracy: 0.8760
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.2604 | 0.4673 | 50 | 0.6573 | 0.5077 | 0.4747 | 0.4906 | 0.7863 |
0.5256 | 0.9346 | 100 | 0.4824 | 0.5732 | 0.6521 | 0.6101 | 0.8465 |
0.4529 | 1.4019 | 150 | 0.4461 | 0.5926 | 0.6509 | 0.6204 | 0.8464 |
0.3767 | 1.8692 | 200 | 0.4265 | 0.5747 | 0.6740 | 0.6204 | 0.8492 |
0.3403 | 2.3364 | 250 | 0.4557 | 0.5564 | 0.6083 | 0.5812 | 0.8451 |
0.331 | 2.8037 | 300 | 0.4065 | 0.6384 | 0.6671 | 0.6524 | 0.8669 |
0.2984 | 3.2710 | 350 | 0.3820 | 0.6411 | 0.6411 | 0.6411 | 0.8729 |
0.2763 | 3.7383 | 400 | 0.4078 | 0.6104 | 0.6037 | 0.6070 | 0.8576 |
0.2626 | 4.2056 | 450 | 0.4203 | 0.6268 | 0.6164 | 0.6216 | 0.8589 |
0.2456 | 4.6729 | 500 | 0.3960 | 0.6240 | 0.6406 | 0.6322 | 0.8686 |
0.2078 | 5.1402 | 550 | 0.4074 | 0.6401 | 0.6290 | 0.6345 | 0.8709 |
0.1859 | 5.6075 | 600 | 0.3853 | 0.6511 | 0.6601 | 0.6556 | 0.8733 |
0.2059 | 6.0748 | 650 | 0.3845 | 0.6539 | 0.6509 | 0.6524 | 0.8772 |
0.1649 | 6.5421 | 700 | 0.4128 | 0.6298 | 0.6486 | 0.6390 | 0.8706 |
0.1599 | 7.0093 | 750 | 0.4328 | 0.6302 | 0.6578 | 0.6437 | 0.8644 |
0.1437 | 7.4766 | 800 | 0.4100 | 0.6510 | 0.6469 | 0.6489 | 0.8727 |
0.1377 | 7.9439 | 850 | 0.4409 | 0.6317 | 0.6699 | 0.6503 | 0.8711 |
0.1164 | 8.4112 | 900 | 0.4331 | 0.6301 | 0.6642 | 0.6467 | 0.8717 |
0.1149 | 8.8785 | 950 | 0.4523 | 0.6466 | 0.6555 | 0.6510 | 0.8712 |
0.1096 | 9.3458 | 1000 | 0.4421 | 0.6502 | 0.6607 | 0.6554 | 0.8760 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1