NLPmonster's picture
layoutlmv3-for-complete-receipt-understanding
4edeb33 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: NLPmonster/layoutlmv3-for-receipt-understanding
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-for-complete-receipt-understanding
    results: []

layoutlmv3-for-complete-receipt-understanding

This model is a fine-tuned version of NLPmonster/layoutlmv3-for-receipt-understanding on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4421
  • Precision: 0.6502
  • Recall: 0.6607
  • F1: 0.6554
  • Accuracy: 0.8760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.2604 0.4673 50 0.6573 0.5077 0.4747 0.4906 0.7863
0.5256 0.9346 100 0.4824 0.5732 0.6521 0.6101 0.8465
0.4529 1.4019 150 0.4461 0.5926 0.6509 0.6204 0.8464
0.3767 1.8692 200 0.4265 0.5747 0.6740 0.6204 0.8492
0.3403 2.3364 250 0.4557 0.5564 0.6083 0.5812 0.8451
0.331 2.8037 300 0.4065 0.6384 0.6671 0.6524 0.8669
0.2984 3.2710 350 0.3820 0.6411 0.6411 0.6411 0.8729
0.2763 3.7383 400 0.4078 0.6104 0.6037 0.6070 0.8576
0.2626 4.2056 450 0.4203 0.6268 0.6164 0.6216 0.8589
0.2456 4.6729 500 0.3960 0.6240 0.6406 0.6322 0.8686
0.2078 5.1402 550 0.4074 0.6401 0.6290 0.6345 0.8709
0.1859 5.6075 600 0.3853 0.6511 0.6601 0.6556 0.8733
0.2059 6.0748 650 0.3845 0.6539 0.6509 0.6524 0.8772
0.1649 6.5421 700 0.4128 0.6298 0.6486 0.6390 0.8706
0.1599 7.0093 750 0.4328 0.6302 0.6578 0.6437 0.8644
0.1437 7.4766 800 0.4100 0.6510 0.6469 0.6489 0.8727
0.1377 7.9439 850 0.4409 0.6317 0.6699 0.6503 0.8711
0.1164 8.4112 900 0.4331 0.6301 0.6642 0.6467 0.8717
0.1149 8.8785 950 0.4523 0.6466 0.6555 0.6510 0.8712
0.1096 9.3458 1000 0.4421 0.6502 0.6607 0.6554 0.8760

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1