DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa

Notes.

cd transformers/examples/text-classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-v2-xxlarge   \\\n--task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 128   --per_device_train_batch_size 4   \\\n--learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
Downloads last month
108
Safetensors
Model size
1.57B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using NDugar/ZSD-microsoft-v2xxlmnli 4